對電阻使用的經(jīng)驗法則說不
發(fā)布時間:2018-03-27 來源:Harry Holt 責(zé)任編輯:wenwei
【導(dǎo)讀】如果您是在741運算放大器橫行天下的時代長大的,那么平衡運算放大器輸入端電阻的觀念必定已扎根在您的頭腦中。隨著時間的流逝,由于不同電路技術(shù)和不同IC工藝的出現(xiàn),這樣做可能不再是對的。事實上,它可能引起更大直流誤差和更多噪聲,使電路更不穩(wěn)定。我們以前為什么要那樣做?什么變化導(dǎo)致我們現(xiàn)在這樣做可能是錯誤的?
按照許多年前老師的教導(dǎo),我們會在運算放大器的兩個輸入端放上相等的阻抗。本文探究為什么會有這么一條經(jīng)驗法則,以及我們是否應(yīng)當(dāng)遵循這種做法。
老師的教導(dǎo)
如果您是在741運算放大器橫行天下的時代長大的,那么平衡運算放大器輸入端電阻的觀念必定已扎根在您的頭腦中。隨著時間的流逝,由于不同電路技術(shù)和不同IC工藝的出現(xiàn),這樣做可能不再是對的。事實上,它可能引起更大直流誤差和更多噪聲,使電路更不穩(wěn)定。我們以前為什么要那樣做?什么變化導(dǎo)致我們現(xiàn)在這樣做可能是錯誤的?
在二十世紀(jì)六十年代和七十年代,第一代運算放大器采用普通雙極性工藝制造。為獲得合理的速度,差分對電流源電流一般在10 μA到20 μA范圍內(nèi)。
而β值為40到70,故輸入偏置電流在1 μA左右。然而,晶體管匹配度不是那么高,所以輸入偏置電流不相等,導(dǎo)致輸入偏置電流之間有10%到20%的偏差(稱為"輸入失調(diào)電流")。
在同相接地輸入端增加一個與輸入電阻R1和反饋電阻R2的并聯(lián)組合相等的電阻(圖1中的R3),可以讓阻抗相等。做一些計算可以證明,誤差降至。由于為的10%到20%,所以這會有助于降低輸出失調(diào)誤差。
圖1. 經(jīng)典反相放大器
直流誤差
為降低雙極性運算放大器的輸入偏置電流,許多運算放大器設(shè)計集成了輸入偏置電流消除功能。OP07就是一個例子。輸入偏置電流消除功能的增加使偏置電流大大降低,但輸入失調(diào)電流可能為剩余偏置電流的50%到100%,所以增加電阻的作用非常有限。某些情況下,增加電阻反而可能導(dǎo)致輸出誤差提高。
噪聲
電阻熱噪聲的計算公式為√4kTRB,故1 kΩ電阻會有4 nV/√Hz的噪聲。增加電阻會增加噪聲。在圖2中,出人意料的是,雖然909 Ω補償電阻是值最低的電阻,但由于從該節(jié)點到輸出端的噪聲增益,它給圖2輸出端貢獻的噪聲最多。R1引起的輸出噪聲為40 nV/√Hz,R2為12.6 nV/√Hz,R3為42 nV/√Hz。因此,請勿使用電阻。另一方面,如果運算放大器采用雙電源供電,并且一個電源先于另一個電源上電,那么ESD網(wǎng)絡(luò)可能發(fā)生閂鎖問題。這種情況下,可能希望增加一定的電阻來保護器件。但若使用的話,應(yīng)在電阻上放置一個旁路電容以減少電阻的噪聲貢獻。
圖2. 噪聲分析
穩(wěn)定性
所有運算放大器都有一定的輸入電容,包括差分和共模。如果運算放大器連接為跟隨器,并且在反饋路徑中放入一個電阻以平衡阻抗,那么系統(tǒng)可能容易發(fā)生振蕩。原因是:大反饋電阻、運算放大器的輸入電容和PC板上的雜散電容會形成一個RC低通濾波器(LPF)。此濾波器會引起相移,并降低閉環(huán)系統(tǒng)的相位裕量。如果降低得太多,運算放大器就會振蕩。一位客戶在一個1 Hz Sallen-Key低通濾波器電路中使用AD8628 CMOS運算放大器。由于轉(zhuǎn)折頻率較低,電阻和電容相當(dāng)大(參見圖3)。輸入電阻為470 kΩ,所以客戶在反饋路徑中放入一個470 kΩ電阻。此電阻與8 pF的輸入電容(參見圖4)一起提供一個42 kHz極點。AD8628的增益帶寬積為2 MHz,因此它在42 kHz仍有大量增益,它發(fā)生了軌到軌振蕩。把470 kΩ電阻換成0 Ω跳線即解決了問題。因此,反饋路徑中應(yīng)避免使用大電阻。這里,何者為大取決于運算放大器的增益帶寬。對于高頻運算放大器,例如增益帶寬超過400 MHz的ADA4817-1,1 kΩ反饋電阻就稱得上是大電阻。務(wù)必閱讀數(shù)據(jù)手冊以了解其中的建議。
圖3. 您所見
圖4. 電子所見
結(jié)語
多年來的實踐會產(chǎn)生一些有用的經(jīng)驗法則。審核設(shè)計時,仔細(xì)檢視這些規(guī)則,判定它們是否仍然適用是很好的做法。關(guān)于是否需要增加平衡電阻,如果運算放大器是帶有輸入偏置電流消除功能的CMOS、JFET或雙極型,那么很可能不需要添加。
推薦閱讀:
特別推薦
- 增強視覺傳感器功能:3D圖像拼接算法幫助擴大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- IGBT的并聯(lián)知識點梳理:靜態(tài)變化、動態(tài)變化、熱系數(shù)
- 技術(shù)創(chuàng)新+場景多元,協(xié)作機器人產(chǎn)業(yè)騰飛正當(dāng)時
- 躍昉科技五周年:以技術(shù)創(chuàng)新為引擎,推動行業(yè)數(shù)字化轉(zhuǎn)型
- 2025第六屆深圳國際芯片、模組與應(yīng)用方案展覽會
- 接線端子的類型與設(shè)計選擇考慮事項
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
Lattice
LCD
LCD模組
LCR測試儀
lc振蕩器
Lecroy
LED
LED保護元件
LED背光
LED調(diào)光
LED模擬調(diào)光
LED驅(qū)動
LED驅(qū)動IC
LED驅(qū)動模塊
LED散熱
LED數(shù)碼管
LED數(shù)字調(diào)光
LED顯示
LED顯示屏
LED照明
LED照明設(shè)計
Lightning
Linear
Litepoint
Littelfuse
LTC
LTE
LTE功放
LTE基帶
Marvell