圖 2.36 偏置電流測試電路
解析一種便于實現(xiàn)的放大器偏置電流Ib測量方法與仿真
發(fā)布時間:2020-09-28 責(zé)任編輯:lina
【導(dǎo)讀】本篇介紹一個種不依賴昂貴檢測設(shè)備的偏置電流測試方法,同時配合 LTspice 仿真增強理解。工程師可以在普通實驗室環(huán)境中,根據(jù)該方法調(diào)整放大器局部電路實現(xiàn)偏置電流的準(zhǔn)確測量。
本篇介紹一個種不依賴昂貴檢測設(shè)備的偏置電流測試方法,同時配合 LTspice 仿真增強理解。工程師可以在普通實驗室環(huán)境中,根據(jù)該方法調(diào)整放大器局部電路實現(xiàn)偏置電流的準(zhǔn)確測量。
如圖 2.36 為 ADA4077 的偏置電流測試電路,R1、R2 是串聯(lián)在放大器輸入端的 1MΩ電阻,用于感應(yīng) Ib+與 Ib-,通過控制開關(guān) S1 和 S2 通斷的狀態(tài),分別測量 Vos、Ib+、Ib- 單獨或者組合情況下,作為激勵產(chǎn)生相應(yīng)的輸出直流噪聲,進而計算出 Ib+、Ib-,并最終得到 Ib 及 Ios,測試操作如下:
圖 2.36 偏置電流測試電路
步驟一,測試放大器的輸入失調(diào)電壓對輸出直流誤差電壓的應(yīng)影響。將開關(guān) S1 和 S2 全部閉合,由于兆歐級電阻 R1,R2 被開關(guān)短路,Ib- 流經(jīng) R3、Ib+流經(jīng) R5 所引起的誤差電壓相比于失調(diào)電壓誤差通常小于 1%。因此,近似認為該狀態(tài)下測量的放大器輸出電壓 Vo1 是由輸入失調(diào)電壓 Vos 所導(dǎo)致,關(guān)系如式 2-18。
如圖 2.37,Vo1 瞬態(tài)分析結(jié)果為 -34.347mV,由于 Gn 為 1001,代入式 2-18 計算 Vos 為 -34.347μV。
圖 2.37 ADA4077 Vos 導(dǎo)致的輸出直流誤差電壓仿真結(jié)果
步驟二,打開開關(guān) S2,開關(guān) S1 保持閉合,此時待測放大器的 Ib+流入 R2,在放大器的同相輸入端形成一個附加失調(diào)電壓 VIb+,它與放大器 Vos 共同在電路噪聲增益的作用下,產(chǎn)生輸出直流誤差電壓為 Vo2,如式 2-19。
Ib+的電流流向為: 地 ->R5 并聯(lián) R6->R2->ADA4077 同相輸入端,計算 Ib+如式 2-20。
如圖 2.38,Vo2 瞬態(tài)分析結(jié)果為 -710.009mV,代入式 2-19 可計算 VIb+為 -0.76495mV。再將 VIb+代入式 2-20,計算 Ib+為 0.6756nA。
圖 2.38 ADA4077Vos 與 Ib+導(dǎo)致的輸出直流誤差電壓仿真結(jié)果
步驟三,閉合開關(guān) S2,打開開關(guān) S1,Ib- 在 R3 與 R1 連接端形成另一個附加失調(diào)電壓 VIb-,它與放大器的 Vos 共同在電路噪聲增益的作用下,產(chǎn)生輸出直流誤差電壓為 Vo3,如式 2-21。
Ib- 的電流流向為 VIb->R1->ADA4077 反相相輸入端,可得式 2-22。
如圖 2.39, Vo3 瞬態(tài)分析結(jié)果為 307.316mV,代入式 2-21 得到 VIb- 為 0.34166mV。再將 VIb- 代入式 2-22,計算得到 Ib- 為 0.341663nA。
圖 2.39 ADA4077Vos 與 Ib- 導(dǎo)致的輸出直流誤差電壓仿真結(jié)果
將 Ib-、Ib+代入式 2-11、2-12,計算 ADA4077 的輸入偏置電流、失調(diào)電流分別為:
對照圖 2.2,仿真計算結(jié)果在 ADA4077 輸入偏置電流,失調(diào)電流的范圍中。
圖 2.2 ADA4077 偏置電流等靜態(tài)參數(shù)
該測試方法是包括失調(diào)電壓測量與偏置電流測量。所以,偏置電流實際測量的中同樣需要注意的供電電源的清潔等問題(參考《放大器 Vos 失調(diào)電壓的測試與處理方法》),避免在測試中因為操作不當(dāng)引入誤差。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索