無線通信RF直接變頻發(fā)送器
發(fā)布時間:2017-06-09 來源:Ajay Kuckreja 責(zé)任編輯:wenwei
【導(dǎo)讀】本文介紹了基于MAX5879等RF DAC的RF直接變頻發(fā)送器設(shè)計(jì),文章列舉了零中頻、正交IF調(diào)制、高中頻調(diào)制以及RF直接變頻架構(gòu),詳細(xì)介紹了RF直接變頻帶給智能手機(jī)、平板電腦等無線設(shè)備的優(yōu)勢。正如本文所述,利用高性能DAC實(shí)現(xiàn)的RF直接變頻能夠大幅減少通信系統(tǒng)的元件數(shù)量、降低功耗并合成寬頻帶信號。
引言
無線電發(fā)射器在經(jīng)歷了若干年的發(fā)展后,逐步從簡單中頻發(fā)射架構(gòu)過渡到正交中頻發(fā)送器、零中頻發(fā)送器。而這些架構(gòu)仍然存在局限性,最新推出的RF直接變頻發(fā)送器能夠克服傳統(tǒng)發(fā)送器的局限性。本文比較了無線通信中不同發(fā)射架構(gòu)的特點(diǎn),RF直接變頻發(fā)送器采用高性能數(shù)/模轉(zhuǎn)換器(DAC),比傳統(tǒng)技術(shù)具有明顯優(yōu)勢。RF直接變頻發(fā)送器也具有自身挑戰(zhàn),但為實(shí)現(xiàn)真正的軟件無線電發(fā)射架構(gòu)鋪平了道路。
RF DAC,例如14位2.3Gsps MAX5879,是RF直接變頻架構(gòu)的關(guān)鍵電路。這種DAC能夠在1GHz帶寬內(nèi)提供優(yōu)異的雜散和噪聲性能。器件在第二和第三奈奎斯特頻帶采用創(chuàng)新設(shè)計(jì),支持信號發(fā)射,能夠以高達(dá)3GHz的輸出頻率合成射頻信號,測量結(jié)果驗(yàn)證了DAC的性能。
傳統(tǒng)的射頻發(fā)送器架構(gòu)
過去數(shù)十年間,一直采用傳統(tǒng)的發(fā)送器架構(gòu)實(shí)現(xiàn)超外差設(shè)計(jì),利用本振(LO)和混頻器產(chǎn)生中頻(IF)?;祛l器通常在LO附近產(chǎn)生兩個鏡頻(稱為邊帶),通過濾除其中一個邊帶獲得有用信號?,F(xiàn)代無線發(fā)射系統(tǒng),尤其是基站(BTS)發(fā)送器大多對基帶數(shù)字調(diào)制信號進(jìn)行I、Q正交調(diào)制。
圖1. 無線發(fā)送器架構(gòu)。
正交中頻發(fā)送器
復(fù)數(shù)基帶數(shù)字信號在基帶有兩個通路:I和Q。采用兩個信號通路的好處是:使用模擬正交調(diào)制器(MOD)合成兩個復(fù)數(shù)IF信號時,其中一個IF邊帶被消除。而由于I、Q通路的不對稱性,不會非常理想地抵消調(diào)制器的鏡頻。這種正交IF架構(gòu)如圖1(B)所示,圖中,利用數(shù)字正交調(diào)制器和LO數(shù)控振蕩器(NCO)對I、Q基帶信號進(jìn)行內(nèi)插(系數(shù)R),并調(diào)制到正交IF載波。然后,雙DAC將數(shù)字I、Q IF載波轉(zhuǎn)換成模擬信號,送入調(diào)制器。為了進(jìn)一步增大對無用邊帶的抑制,系統(tǒng)還采用了帶通濾波器(BPF)。
零中頻發(fā)送器
圖1(A)所示的零中頻(ZIF)發(fā)送器中,對基帶數(shù)字正交信號進(jìn)行內(nèi)插,以滿足濾波要求;然后將其送入DAC。同樣在基帶將DAC的正交模擬輸出送至模擬正交調(diào)制器。由于將整個已調(diào)制信號轉(zhuǎn)換到LO頻率的RF載波,所以,ZIF架構(gòu)真正凸顯了正交混頻的“魅力”。然而,考慮到I、Q通路并非理想通路,例如LO泄漏和不對稱性,將會產(chǎn)生反轉(zhuǎn)的信號鏡像(位于發(fā)射信號范圍之內(nèi)),從而造成信號誤碼。多載波發(fā)送器中,鏡頻信號可能靠近載波,造成帶內(nèi)雜散輻射。無線發(fā)送器往往采用復(fù)雜的數(shù)字預(yù)失真,用來補(bǔ)償此類瑕疵。
RF直接變頻發(fā)送器
圖1(D)所示RF直接變頻發(fā)送器中,在數(shù)字域采用正交解調(diào)器,LO由NCO取代,從而在I、Q通路獲得幾乎完美的對稱性,基本沒有LO泄漏。所以數(shù)字調(diào)制器的輸出為數(shù)字RF載波,送入超高速DAC。由于DAC輸出為離散時間信號,產(chǎn)生與DAC時鐘頻率(CLK)等距的混疊鏡頻。由BPF對DAC輸出進(jìn)行濾波,選擇射頻載波,然后將其送至可變增益放大器(VGA)。
高中頻發(fā)送器
RF直接變頻發(fā)送器也可利用這種方法產(chǎn)生較高中頻的數(shù)字載波,如圖1(C)所示。這里,DAC將數(shù)字中頻轉(zhuǎn)換為模擬中頻載波。DAC之后利用帶通濾波器的選頻特性濾除中頻鏡頻。然后將該需要的中頻信號送入混頻器,產(chǎn)生IF信號與LO混頻的兩個邊帶,經(jīng)過另外一個帶通濾波器濾波,獲得需要的RF邊帶。
顯然,RF直接變頻架構(gòu)需要最少的有源元件。由于采用帶數(shù)字正交調(diào)制器和NCO的FPGA或ASIC取代模擬正交調(diào)制器和LO,RF直接變頻架構(gòu)避免了I、Q通道的不平衡誤差及LO泄漏。此外,由于DAC的采樣率非常高,更容易合成寬帶信號,同時可保證滿足濾波要求。
高性能DAC是RF直接變頻架構(gòu)取代傳統(tǒng)無線發(fā)送器的關(guān)鍵元件,該DAC需要產(chǎn)生高達(dá)2GHz甚至更高的射頻載波,動態(tài)性能要達(dá)到其它架構(gòu)提供的基帶或中頻性能。MAX5879就是一款這樣的高性能DAC。
利用MAX5879 DAC實(shí)現(xiàn)RF直接變頻發(fā)送器
MAX5879是一款14位、2.3Gsps RF DAC,輸出帶寬大于2GHz,具有超低噪聲和低雜散性能,設(shè)計(jì)用于RF直接變頻發(fā)送器。其頻率響應(yīng)(圖2)可通過更改其沖激響應(yīng)進(jìn)行設(shè)置,不歸零(NRZ)模式用于第一奈奎斯特頻帶輸出。RF模式集中第二、第三奈奎斯特頻帶的輸出功率。歸零(RZ)模式在多個奈奎斯特頻帶提供平坦響應(yīng),但輸出功率較低。
MAX5879的獨(dú)特之處在于RFZ模式。RFZ模式為“零填充”射頻模式,所以,DAC輸入采樣率為其它模式的一半。該模式對于采用較低帶寬合成信號非常有用,并可輸出高階奈奎斯特頻帶的高頻信號。所以MAX5879 DAC可用于合成超出其采樣率的調(diào)制載波,僅受限于2+GHz模擬輸出帶寬。
圖2. MAX5879 DAC的可選頻響特性。
MAX5879性能測試表明:940MHz下,4載波GSM信號的交調(diào)失真大于74dB (圖3);2.1GHz下,4載波WCDMA信號的鄰道泄漏功率比(ACLR)為67dB (圖4);2.6GHz下,2載波LTE的ACLR為65dB (圖5)。這種性能的DAC能夠支持多奈奎斯特頻帶中各種數(shù)字調(diào)制信號的直接數(shù)字合成,可作為多標(biāo)準(zhǔn)、多頻帶無線基站發(fā)送器的公共硬件平臺。
圖3. MAX5879 4載波GSM性能測試,940MHz和2.3Gsps (第一奈奎斯特頻帶)。
圖4. MAX5879 4載波WCDMA性能測試,2140MHz和2.3Gsps (第二奈奎斯特頻帶)。
圖5. MAX5879 2載波LTE性能測試,2650MHz和2.3Gsps (第三奈奎斯特頻帶)。
RF直接變頻發(fā)送器應(yīng)用
MAX5879 DAC也可以同時發(fā)送奈奎斯特頻帶的多個載波。該功能目前用于有線電視下行發(fā)射鏈路,發(fā)送50MHz至1000MHz頻帶的多個QAM調(diào)制信號。對于該應(yīng)用,RF直接變頻發(fā)射器可以支持的載波密度是其它發(fā)射架構(gòu)的20-30倍。此外,由于單個寬帶RF直接變頻發(fā)送器取代了多個無線發(fā)送器,從而大大減小了有線電視前端的功耗和面積。
基于MAX5879的RF直接變頻發(fā)送器可利向用于寬帶、高頻輸出的應(yīng)用,例如,隨著智能手機(jī)和平板電腦的日益普及,無線基站將需要更寬頻帶。毫無疑問,當(dāng)前支持此類裝置的發(fā)射器將逐步由基于高性能RF DAC (例如MAX5879)的RF直接變頻發(fā)送器所取代。
總結(jié)
基于RF DAC的發(fā)送器具有遠(yuǎn)遠(yuǎn)超出傳統(tǒng)架構(gòu)的發(fā)射帶寬,而且不會損失動態(tài)性能,可利用FPGA或ASIC實(shí)現(xiàn),省去了模擬正交調(diào)制器和LO合成器,從而提高無線發(fā)送器的可靠性。這種方案也大大減少了元件數(shù)量,多數(shù)情況下也會降低系統(tǒng)功耗。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動控制解決方案 驅(qū)動智能運(yùn)動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- Quobly與意法半導(dǎo)體攜手, 加快量子處理器制造進(jìn)程,實(shí)現(xiàn)大型量子計(jì)算解決方案
- DigiKey和MediaTek強(qiáng)強(qiáng)聯(lián)合,開啟物聯(lián)網(wǎng)邊緣AI和連接功能新篇章
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖