用SiC提高工業(yè)應(yīng)用的能源效率
發(fā)布時間:2019-11-05 責(zé)任編輯:wenwei
【導(dǎo)讀】包括服務(wù)器電源、不間斷電源(UPS)和電機(jī)驅(qū)動器在內(nèi)的工業(yè)應(yīng)用消耗了世界上很大一部分電力。因此,工業(yè)電源效率的任何提高都將大大降低公司的運(yùn)營成本。對于兼具更高功率密度和更好熱性能雙重優(yōu)勢的高效電源的需求,呈現(xiàn)出指數(shù)增長。
有幾個因素在推動這一增長。首先是全球能源意識的提升,以及日益迫切的對于更理智和更有效地使用能源的訴求。第二個是物聯(lián)網(wǎng)(IoT),它推動了將各種新技術(shù)和服務(wù)導(dǎo)入工業(yè)應(yīng)用。借助工業(yè) 4.0 等智能產(chǎn)業(yè)計劃,機(jī)器、工廠和工作場所通過連接設(shè)備變得更加智能和具有意識,從而實現(xiàn)更高的自動性、效率、可靠性和安全性。
但是,隨著采用工業(yè)自動化(例如機(jī)器人和電控化生產(chǎn)線)應(yīng)用的不斷增加、為這些系統(tǒng)供電的電力成本也水漲船高。為保持競爭力,制造商需要能夠開發(fā)新的操作方法以降低工廠成本。他們還需要充分利用每一寸空間,因為設(shè)備占地面積會直接影響運(yùn)營成本。
能耗的影響還延伸到了數(shù)據(jù)中心。數(shù)據(jù)中心裝載著支持工業(yè)應(yīng)用的服務(wù)器。通過自動化、人工智能和機(jī)器學(xué)習(xí)增加的數(shù)據(jù)流量,反過來又增加了保持設(shè)備運(yùn)行所需的處理資源。散熱性能也很重要,因為數(shù)據(jù)中心消耗的電能中有 20%是用于數(shù)據(jù)中心的冷卻。
對更高效率、更低成本的需求
由于工業(yè)設(shè)備通常是 24 小時/7 天的全天候運(yùn)行,因此效率的任何提高都可以立竿見影地大大降低能耗。解決能源問題的最直接方法是高為這些工業(yè)系統(tǒng)提供動力的系統(tǒng)的能效。Cree 和 Wolfspeed 的聯(lián)合創(chuàng)始人 John Palmour 表示:“最便宜的電力就是你還沒在使用的電力。”
因此,行業(yè)、政府和制造商都面臨巨大壓力,需要開發(fā)出更高效的電源。例如,諸如能源之星(Energy Star)和 80 Plus 之類的標(biāo)準(zhǔn)促進(jìn)了電源裝置(PSU)的能效提升。通過滿足這些標(biāo)準(zhǔn),PSU OEM 可以輕松地向要求苛刻的市場展示其系統(tǒng)的效率。
電源設(shè)計人員面臨的最大挑戰(zhàn)是:功率密度、散熱性能和轉(zhuǎn)換效率這三個特性。此外,設(shè)計人員需要在最小化整體系統(tǒng)成本的同時滿足這些挑戰(zhàn)。
傳統(tǒng)的電源設(shè)計方法將會繼續(xù)在這些方面提供一些改進(jìn)。但由于開發(fā)人員多年來一直專注于從這些系統(tǒng)中獲取更多效益,而相關(guān)效益并不是取之不竭的。所以,為了實現(xiàn)重大改進(jìn),我們需要新的方法。
SiC 能夠做到
碳化硅(SiC)是一種寬禁帶半導(dǎo)體基礎(chǔ)材料。它可用作裸片基板,也可以用于肖特基二極管、MOSFET 等分立器件以及功率模塊。
歷史上,硅(Si)被用作大多數(shù)電子應(yīng)用的半導(dǎo)體基礎(chǔ)材料。但與 SiC 相比,基于 Si 的電源系統(tǒng)在能效方面相形見絀。SiC 提供了諸多領(lǐng)先 Si 的優(yōu)勢(見圖 1)。
圖 1
與傳統(tǒng)的 Si 相比,SiC 具有諸多優(yōu)勢。
優(yōu)勢包括:
• SiC 基器件的漏電流低于 Si 基器件。這是因為電子-空穴對在 SiC 中產(chǎn)生的速度比在 Si 中產(chǎn)生的速度慢,從而在開關(guān)斷開時只產(chǎn)生較低的漏電流損耗。
• SiC 具有 3 電子伏特(eV)的寬帶隙,能夠承受 8 倍大于 Si 的電壓梯度,而不會發(fā)生雪崩擊穿。SiC 更高的臨界擊穿強(qiáng)度,使其能夠在與 Si 相同的封裝中承受更高電壓。因此,可以開發(fā)出類似 SiC 基 MOSFET 器件,其阻斷電壓大約是 Si 基方案的 10 倍。從而,我們可以可靠地制造極高電壓、高功率的設(shè)備,而設(shè)計人員也可以在有限的預(yù)算之內(nèi)提供更高的性能。這些設(shè)備可以非常緊密地放置在一起,從而提高器件的封裝密度。
• 更高的熱導(dǎo)率可以更有效地進(jìn)行熱傳導(dǎo)。此外,較低的導(dǎo)通電阻可降低傳導(dǎo)損耗。
• 基于 SiC 的器件具有更高的開關(guān)頻率。更高的 SiC 開關(guān)頻率可使峰值效率>98.5%,從而使系統(tǒng)有望達(dá)到 80 Plus Titanium 標(biāo)準(zhǔn)(見圖 2)。
圖 2:
該圖顯示了 20 kW SiC AC/DC 轉(zhuǎn)換器的效率。從這些實驗結(jié)果可以看出,該轉(zhuǎn)換器能夠?qū)崿F(xiàn)>98.5%的峰值效率,達(dá)到 80 Plus Titanium 標(biāo)準(zhǔn)。
受益于 SiC 的工業(yè)應(yīng)用
憑借這些特性,基于 SiC 的器件使得電源設(shè)計人員能夠?qū)崿F(xiàn)更高的效率水平。SiC 的影響可以在許多工業(yè)應(yīng)用中看到:
功率因數(shù)校正(PFC):PFC 是一種可通過增加電源的功率因數(shù)來顯著降低電力浪費(fèi)的技術(shù)。如果沒有 PFC,電源將以高幅度窄脈沖消耗電流。使用 PFC,可以平順處理這些脈沖,以減少輸入均方根(RMS)電流和視在輸入功率。這有效地整形了輸入電流,以使
電源實現(xiàn)的功率最大化。
SiC 能夠?qū)崿F(xiàn)更高頻率,從而可以采用更小巧、更經(jīng)濟(jì)的周邊器件(見圖 3)。
SiC 所帶來的更高頻率,允許采用更小巧、更經(jīng)濟(jì)的周邊器件??梢钥吹剑褂?SiCMOSFET 的混合方案只需更少數(shù)量的器件,更具成本效益,并實現(xiàn)了更高功率密度。
可以看到,使用 SiC MOSFET 的混合方案只需更少數(shù)量的器件,更具成本效益,并實現(xiàn)了更高功率密度。這樣就可以減小系統(tǒng)尺寸、降低重量和成本(見圖 4)。此外,除了減少總體能耗外,所獲得的更高效率還改善了散熱性能,從而進(jìn)一步減小了電源的尺寸、降低了重量。
圖 4:
SiC 與傳統(tǒng) Si 相比具有明顯優(yōu)勢。
電動汽車充電:電動汽車需要高效且快速的充電,以最大程度地減少車輛的停駛時間??焖俪潆娬咎峁┝藘?yōu)于汽車車載充電機(jī)(OBC)的顯著優(yōu)勢,其充電時間為 30 分鐘,而OBC 則為 4 小時以上。充電站更靈活,因為它們支持可熱插拔的功率轉(zhuǎn)換模塊,以最大限度地延長有效充電時間。充電站還能以可擴(kuò)展的方式進(jìn)行設(shè)計,從而加快了面世時間并降低了研發(fā)成本。為獲得成功,充電站必須提供高效率、更高的功率密度、耐用度、可靠性以及雙向能量流,以賦能智能電網(wǎng)。
基于 SiC 的充電機(jī)的開關(guān)速度提高了 2-3 倍、損耗降低了 30%、所需的器件數(shù)量減少了30%。從 AC/DC 轉(zhuǎn)換器的框圖中可以看出(見圖 5),使用基于 SiC 的器件可使得設(shè)計具有更少數(shù)量器件、更小尺寸和更低系統(tǒng)成本,同時實現(xiàn)了雙向功率傳輸。
圖 5:
從此 AC/DC 轉(zhuǎn)換器框圖中可以看出,使用基于 SiC 的器件可使得設(shè)計具有更少數(shù)量器件、更小尺寸和更低系統(tǒng)成本,同時實現(xiàn)了雙向功率傳輸。
此外,SiC 的更高效率和更好散熱性能,可實現(xiàn)更高的功率密度(通常提高 65%)。這意味著每個站點(diǎn)都可以提供更多電力,從而可縮短充電時間或每個站點(diǎn)可為更多車輛充電。眼下,為更多車輛充電的能力通常比能夠更快充電的能力更重要。這是因為電池技術(shù)落后于當(dāng)今電源的技術(shù)能力,使得向電動汽車電池輸送電能的速度要快于安全充電的速度。
服務(wù)器電源:數(shù)據(jù)中心當(dāng)前消耗美國所有電能的 3%。估計在未來 7 年中,這一數(shù)字將上升到 15%。隨著物聯(lián)網(wǎng)部署的增加,預(yù)計數(shù)據(jù)中心及其相關(guān)的能源和運(yùn)營成本將成為決定工業(yè)系統(tǒng)和智能工廠效率的關(guān)鍵考慮因素。SiC 的優(yōu)勢將在未來幾年內(nèi)以多種方式幫助提高數(shù)據(jù)中心效率。例如,當(dāng)今數(shù)據(jù)中心使用的基于 SiC 的 MOSFET 和二極管提高了服務(wù)器的熱性能,僅與冷卻相關(guān)的能源成本就節(jié)省了 40%。
Wolfspeed SiC — 馭動未來的堅實基礎(chǔ)
Cree 旗下 Wolfspeed 是 SiC 基功率和射頻(RF)半導(dǎo)體的創(chuàng)新者。Wolfspeed 擁有 30 多年的 SiC 生產(chǎn)和設(shè)計經(jīng)驗,是 SiC 技術(shù)的全球領(lǐng)導(dǎo)者。Wolfspeed 提供了豐富的 SiC 基器件產(chǎn)品組合,以幫助優(yōu)化工業(yè)系統(tǒng)和電源設(shè)計。
隨著對于重量更輕、效率更高和散熱更好的功率器件需求的增長,對于 SiC 的需求也在相應(yīng)增長。 Wolfspeed 最近啟動了一項為期五年、耗資 10 億美元的投資,計劃將其 SiC 晶圓的制造產(chǎn)能和 SiC 材料的產(chǎn)量提高 30 倍,以滿足到 2024 年所預(yù)期的市場增長。
Wolfspeed 所生產(chǎn)的寬禁帶半導(dǎo)體器件將賦能正在經(jīng)歷重大技術(shù)轉(zhuǎn)型的汽車、通訊基礎(chǔ)設(shè)施和工業(yè)市場。
Wolfspeed SiC 是久經(jīng)現(xiàn)場考驗的技術(shù),具有業(yè)界領(lǐng)先的可靠性,已經(jīng)在包括電機(jī)驅(qū)動、服務(wù)器電源、電信和電動汽車充電等諸多重要領(lǐng)域得到采用。從 2010 年到 2020 年,在這些應(yīng)用中的 SiC 基電源已實現(xiàn)了 6-7 萬億小時的運(yùn)行時間,并節(jié)省了 6,200 億 kWh 的電能。Wolfspeed 具有業(yè)內(nèi)最低(<5%)的時間故障率(FIT,1FIT=1 個單位產(chǎn)品在 109小時內(nèi)出現(xiàn) 1 次故障的情況)。
SiC 的獨(dú)特屬性有望助力顯著減少全世界的能源消耗。Wolfspeed SiC 提供了業(yè)界領(lǐng)先的開關(guān)速度、高性能和出眾的熱性能,這是電源系統(tǒng)設(shè)計人員構(gòu)建節(jié)能型電源基礎(chǔ)架構(gòu)所需要的。
世界依靠能源運(yùn)轉(zhuǎn),Wolfspeed SiC 以更少的能源消耗,賦能未來。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機(jī)運(yùn)動控制解決方案 驅(qū)動智能運(yùn)動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 功率器件熱設(shè)計基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖