如何使微處理器的PWM頻率和分辨率翻倍
發(fā)布時(shí)間:2017-08-10 來源:Alperen Akkuncu 責(zé)任編輯:wenwei
【導(dǎo)讀】降低PWM DAC紋波的方法通常有兩種:一種是降低低通濾波器的截止頻率,另一種是提高PWM信號的頻率。然而,前一種方法會加長上升時(shí)間,后一種方法會導(dǎo)致分辨率降低。本設(shè)計(jì)實(shí)例討論了在不使用上述兩種方法的情況下,如何降低PWM DAC的紋波。
我們大多數(shù)人都知道PWM DAC(數(shù)模轉(zhuǎn)換器)。它們很容易實(shí)現(xiàn),也很便宜,非常適合一些低性能的應(yīng)用。
實(shí)現(xiàn)它們的方法是濾除PWM信號中的高頻分量,只留下正比于占空比的低頻或直流分量。但是低通濾波器并不能完全濾除PWM頻率,因此低頻/直流信號中通常都會有一定程度的紋波。
減少PWM DAC紋波的方法一般有兩種。一種是降低低通濾波器的截止頻率,另一種是提高PWM信號的頻率。然而不可避免的是,更低的截止頻率會延長上升時(shí)間;如果是在給定時(shí)鐘頻率點(diǎn)通過減小計(jì)數(shù)器尺寸實(shí)現(xiàn)的,那么更快的PWM頻率會降低分辨率。
下面要討論的設(shè)計(jì)實(shí)例非常有趣,著重介紹了另外一種降低PWM DAC紋波的方法。
事實(shí)上,我們可以使用相位差為180°的兩個(gè)PWM信號來降低上述紋波。從直覺上,當(dāng)兩個(gè)相同頻率的正弦波的相位相差180°時(shí),它們會相互抵消,因此我們使用相位差為180°的兩個(gè)PWM信號也能將彼此的諧波分量抵消干凈,是這樣嗎?確實(shí)是這樣,但并不是PWM信號的所有諧波分量都能抵消,有些分量可以抵消,有些卻抵消不了。這與傅里葉級數(shù)有關(guān),比較復(fù)雜,這里就不羅列一大堆數(shù)學(xué)公式來進(jìn)行解釋了。
兩個(gè)PWM信號之間180°的相位差是如何實(shí)現(xiàn)的呢?我使用了TI的MSP320FR5969 LaunchPad,這種方法很常用。為了實(shí)現(xiàn)相位移動,需要兩個(gè)定時(shí)器。其中一個(gè)定時(shí)器必須包含兩個(gè)比較-捕獲-PWM(CCP)模塊,另一個(gè)只需要一個(gè)CCP模塊。
在包含兩個(gè)CCP模塊的定時(shí)器中,可以用一個(gè)CCP模塊來設(shè)置該定時(shí)器的PWM頻率和占空比,另一個(gè)CCP模塊產(chǎn)生中斷,用于啟動另一個(gè)定時(shí)器,兩者的延時(shí)等于PWM周期的一半。另一個(gè)定時(shí)器中的CCP模塊用于設(shè)置相同的PWM頻率和占空比。你還必須對這個(gè)延時(shí)進(jìn)行“微調(diào)”,因?yàn)檐浖赑WM信號之間增加額外的時(shí)間。舉例來說,在我的代碼的102行,我將比較寄存器的值從(timer_period+1)/2改為了(timer_period+1)/2-27。
我做了一些小調(diào)查,想看看其它微控制器是否具有相同的硬件和能力來實(shí)現(xiàn)我所用的方法:許多Atmel微控制器都有1個(gè)以上的定時(shí)器,每種控制器通常都有兩個(gè)CCP(比如ATmega 328),因此實(shí)現(xiàn)這種方法應(yīng)該是可能的。另外一個(gè)常見的例子是STM32F051R8(這是一些流行的ST電路板使用的微控制器),它有11個(gè)定時(shí)器,其中許多定時(shí)器都有1個(gè)以上的CCP。TI基于ARM的微控制器通常有獨(dú)立的PWM和定時(shí)器模塊(如TM4C123GH6PM),因此應(yīng)該更容易實(shí)現(xiàn)相移。使用其中一個(gè)定時(shí)器,兩個(gè)PWM模塊就可以以一半PWM周期的延時(shí)開啟。
圖1:單路和雙路PWM電路。
在相移DAC的Vout端,兩個(gè)PWM信號被累加在一起,結(jié)果有些諧波分量彼此抵消,最終實(shí)現(xiàn)了降低紋波的效果。
我們看看使用三種不同電阻值時(shí)的情況。每個(gè)PWM信號都是占空比為25%、頻率為100kHz。
圖2:上面的波形是傳統(tǒng)PWM,下面的波形是雙路相移PWM。從左到右每格的電壓遞減100mV、50mV、4mV。
從圖中的結(jié)果可以看出:首先,峰-峰紋波降低了;其次,傳統(tǒng)PWM DAC的紋波基頻等于 PWM信號的頻率(100kHz)。相移PWM DAC的紋波基頻等于PWM信號的二次諧波(200kHz),這意味著我們用相移DAC成功地刪除了PWM信號的一次諧波。
這種方法的一個(gè)優(yōu)點(diǎn)是不用增加上升時(shí)間也能降低紋波(或者相同的紋波只需一半的上升時(shí)間)。
另外一個(gè)潛在優(yōu)點(diǎn)是,將兩個(gè)PWM設(shè)置為相隔一個(gè)計(jì)數(shù)值可以獲得中間值,進(jìn)而實(shí)現(xiàn)DAC有效分辨率的翻倍。雖然這會導(dǎo)致少許的不對稱并增加紋波,但是影響很小可以忽略不計(jì)。
本文轉(zhuǎn)載自電子技術(shù)設(shè)計(jì)。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動控制解決方案 驅(qū)動智能運(yùn)動新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖