圖1.IPM的熱阻模型
智能功率模塊IPM的結(jié)溫評估
發(fā)布時間:2021-08-11 來源:英飛凌,王剛、田斌 責(zé)任編輯:lina
【導(dǎo)讀】本文詳細敘述了實際使用時對IPM模塊的各種結(jié)溫的計算和測試方法,從直接紅外測試法,內(nèi)埋熱敏測試,殼溫的測試方法,都進行詳細說明,以指導(dǎo)技術(shù)人員通過測量模塊自帶的Tntc的溫度估算或測試IPM變頻模塊的結(jié)溫,然后利用開發(fā)樣機測試結(jié)果對實際產(chǎn)品進行結(jié)溫估算標定,評估IPM模塊運行的可靠性。
引言
IPM模塊是電機驅(qū)動變頻器的最重要的功率器件, 近些年隨著IPM模塊的小型化使模塊Rth(j-c)變大,從而對溫升帶來了越來越多的挑戰(zhàn);雖然芯片技術(shù)的進步會降低器件損耗,能一定程度緩解小型化的溫升問題,但不斷成熟的控制技術(shù)和成本控制也需要更有效的利用結(jié)溫評估結(jié)果進行靈活保護。在實際應(yīng)用中,工程師最直接也是最常見的一個問題就是:我檢測到了IPM的NTC的溫度,那么里面IGBT&MOSFET真實的結(jié)溫是多少?本文詳細敘述了實際使用時對IPM模塊的各種結(jié)溫的計算和測試方法,從直接紅外測試法,內(nèi)埋熱敏測試,殼溫的測試方法,都進行詳細說明,以指導(dǎo)技術(shù)人員通過測量模塊自帶的Tntc的溫度估算或測試IPM變頻模塊的結(jié)溫,然后利用開發(fā)樣機測試結(jié)果對實際產(chǎn)品進行結(jié)溫估算標定,評估IPM模塊運行的可靠性。
實際產(chǎn)品中IPM結(jié)溫評估的重要性和評估條件
很顯然在實際產(chǎn)品中,我們能檢測的溫度信息有Tntc,Ta,以及其他信息有系統(tǒng)功率(或相電流,母線電壓),散熱風(fēng)速(影響熱阻)等,而在開發(fā)樣機階段除了Tntc,Ta,還能通過一定手段檢測Tc,IPM的耗散功率等,從而能根據(jù)實際功率,熱阻參數(shù),Tc來估算Tj。
實際產(chǎn)品與開發(fā)樣機需要保證負載功率,IPM參數(shù),系統(tǒng)熱阻模型都一致,才能通過開發(fā)測試樣機的定標測試結(jié)果來設(shè)定實際產(chǎn)品不同工況的保護限值,所以實際產(chǎn)品需要利用的定標參數(shù)包括:實際的負載信息,Ta,Tntc,散熱風(fēng)速等。
IPM的熱阻模型
在準備評估結(jié)溫前,我們先復(fù)習(xí)一遍IPM的熱阻模型,如下圖以英飛凌自帶NTC的Mini系列IPM模塊散熱器安裝結(jié)構(gòu)為例:
圖1.IPM的熱阻模型
如圖2,P1是IGBT晶圓到模塊底部和散熱器的散熱路徑,P2是IGBT晶圓到模塊上部的散熱路徑,由于Rthch+Rthha<<Rthc2a,所以P1為主要的功率耗散通道。同時我們要注意散熱風(fēng)量會影響Rthha跟Rthc2a。
圖2.IPM的簡化熱阻模型
IPM的結(jié)溫計算
IPM的損耗是由IGBT的導(dǎo)通損耗和開關(guān)損耗組成,驅(qū)動芯片的損耗可以忽略不計,計算原理和分立IGBT的損耗計算是一樣的,英飛凌在相關(guān)文檔都有很詳細的論述。
這里只簡要提及計算過程,先利用規(guī)格書上圖3的I-V曲線找到不同電流條件下的Vcesat和Vf,通過跟實時電流的積分計算IGBT跟diode的導(dǎo)通損耗。然后利用雙脈沖測試平臺測試不同電流條件下的Eon,Eoff,Erec損耗, 再通過積分計算得到開關(guān)損耗。當(dāng)然,因為規(guī)格書參數(shù)本身會存在范圍誤差,為了得到更準確地數(shù)值,實際操作時可能需要更準確的實測數(shù)據(jù)得到Ptotal。
得到Ptotal后,我們可以通過以下公式來計算單顆晶圓上的結(jié)溫Tj:
Tj=Tc+Ptotal*Rthj-c
Tj:IGBT的結(jié)溫
Tc:模塊晶圓正下方的表面溫度
Ptotal:IGBT開關(guān)和導(dǎo)通損耗
Rthj-c:IGBT芯片和到封裝表面之間的熱阻
圖3.IGBT和二極管的I-V曲線
對于英飛凌IPM產(chǎn)品來說,我們有一個更簡便的方法,如圖4可以利用仿真工具輸入實際使用的系統(tǒng)條件就可以直接算出對應(yīng)IPM在指定條件下的損耗和結(jié)溫。
圖4.英飛凌IPM仿真工具
結(jié)溫的檢測方法
通常我們能想到兩種最直接的辦法,一種紅外測溫儀直接檢測,一種是預(yù)埋熱電藕測試。
如圖5第一種方法是將模塊在最熱的晶圓處開口,露出晶圓并將其涂黑,用紅外測溫儀測量晶圓溫度。這種方法通常在工程研究上做參考評估用,實際產(chǎn)品測試時因空間結(jié)構(gòu)所限往往并不可取。
圖5.紅外測溫儀測試結(jié)溫
第二種方法需要IPM廠家提供預(yù)埋熱電偶的樣品,在最熱晶圓處開孔至晶圓外露,預(yù)埋熱電藕于晶圓上方足夠近但又不接觸到晶圓的地方,樣機測試時可以通過數(shù)據(jù)采集儀讀取芯片溫度。
預(yù)埋熱電偶的測量方法建議通過測量IPM的直流非開關(guān)工作狀態(tài)來模擬等損耗條件的實際工作狀況;直接進行動態(tài)負載測試建議采用手持式測溫儀減小干擾,并對測量引線及設(shè)備的布放進行優(yōu)化,實際操作時難度還是非常大的。
利用結(jié)殼熱阻法測量模塊結(jié)溫是比較常見并且有效的一種方法:先測試殼溫Tc,通過結(jié)殼熱阻Rthj-c,然后利用我們上述計算出來的Ptotal功耗來計算得到結(jié)溫(Tj=Tc+Ptotal*Rthj-c)。
Tc殼溫指的是最高結(jié)溫晶圓正對散熱器的殼的溫度,要測得此點溫度需要在散熱器鉆孔或者開槽布防熱電藕,如圖6的兩種開槽方式:
圖6.Tc測試熱電偶安裝的開槽方式
結(jié)溫標定
在實際的項目開發(fā)時,我們只需要在開發(fā)前期測試各種不同極限條件下的Tc和Tntc溫度,擬合出Ta 、Vs、Tntc、Vs、Tj的對應(yīng)曲線關(guān)系。
實現(xiàn)利用開發(fā)樣機測試結(jié)果對實際產(chǎn)品進行結(jié)溫估算標定,必須滿足下面的條件:
二者的負載功率以及控制方法完全相同。
二者的系統(tǒng)熱阻參數(shù)必須相同,包括散熱器,散熱器與模塊接觸熱阻,散熱風(fēng)扇的風(fēng)量等。
二者的IPM必須相同。
實際產(chǎn)品的上述任何參數(shù)發(fā)生了改變,理論上都要通過樣機測試進行重新標定,圖7為例我們先標定散熱器尺寸和風(fēng)速模型。
圖7.散熱器熱阻模型標定
然后需要實測散熱器的熱阻,下圖以風(fēng)冷散熱器為例,取幾個典型的風(fēng)速點,待熱平衡后,測量散熱器表面溫度和進風(fēng)口溫度,并計算散熱器熱阻。
圖8.散熱器熱阻Vs風(fēng)速曲線
在相同條件下,通過讀取Tntc的溫度值,同時考慮到風(fēng)速對散熱器熱阻的影響,我們可以得到圖9的Tj 、VS、Tntc的擬合關(guān)系如下:
圖9.Tj VS Tntc在不同風(fēng)速下的擬合曲線(綠色為最低風(fēng)速,紅色為中等風(fēng)速,藍色為最高風(fēng)速)
同時結(jié)合系統(tǒng)負載,可以得到如圖10對應(yīng)不同Ta條件下的受限于Tjmax的輸出功率值(或者負載相電流值),以及Po-limit(Io-limit)vs.Tntc的曲線。
圖10.Po-limit(Io-limit)vs. Tntc的曲線
結(jié)束語利用測試樣機的結(jié)溫估算結(jié)果,可以在批量生產(chǎn)的產(chǎn)品中針對估算得到的經(jīng)驗數(shù)據(jù),在不同Ta條件下,根據(jù)Tntc檢測結(jié)果的變化,來設(shè)定不同的功率限制值,從而控制Tj不要超過設(shè)定Tjmax值,保護IPM不會過熱而損壞。
功率達到限制值后的另外選擇:提高散熱風(fēng)扇的風(fēng)速,同時提升輸出功率限值到新風(fēng)速下的新限值,后期我們就可以直接采用Tntc溫度來合理評估溫度保護何限頻(電機轉(zhuǎn)速頻率)點。
(來源:英飛凌,作者:王剛、田斌,工業(yè)功率控制事業(yè)部大中華區(qū)應(yīng)用工程師)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- Quobly與意法半導(dǎo)體攜手, 加快量子處理器制造進程,實現(xiàn)大型量子計算解決方案
- DigiKey和MediaTek強強聯(lián)合,開啟物聯(lián)網(wǎng)邊緣AI和連接功能新篇章
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護
電路圖