差分放大器與電流傳感器放大器的區(qū)別
發(fā)布時(shí)間:2021-05-25 來(lái)源:TsinghuaJoking 責(zé)任編輯:lina
【導(dǎo)讀】在很多功率電子系統(tǒng)中,需要對(duì)于電源正極輸出電流進(jìn)行檢測(cè)(也稱高端電流檢測(cè):High-Side Current Sensing),比如電機(jī)控制、線圈驅(qū)動(dòng)、電源管理(像 DC-DC轉(zhuǎn)換,電池檢測(cè)等)。在這些應(yīng)用中,在電源的正極(高端)而非負(fù)極(也就是電流返回端)對(duì)電流檢測(cè),可以提高電流檢測(cè)性能。
從01 高端電流檢測(cè)
在很多功率電子系統(tǒng)中,需要對(duì)于電源正極輸出電流進(jìn)行檢測(cè)(也稱高端電流檢測(cè):High-Side Current Sensing),比如電機(jī)控制、線圈驅(qū)動(dòng)、電源管理(像 DC-DC轉(zhuǎn)換,電池檢測(cè)等)。在這些應(yīng)用中,在電源的正極(高端)而非負(fù)極(也就是電流返回端)對(duì)電流檢測(cè),可以提高電流檢測(cè)性能。例如可以確定對(duì)地短路電流、檢測(cè)續(xù)流二極管中的電流。如果在電源負(fù)端使用分流器來(lái)獲取電源電流可能會(huì)造成地線電位的不一致。下面圖1, 圖2 顯示了使用高端檢測(cè)電機(jī)和電磁線圈電流的電路配置。
▲ 圖1 電磁線圈驅(qū)動(dòng)電路中的高端電流檢測(cè)
▲ 圖2 H-橋電機(jī)驅(qū)動(dòng)電路高端電流檢測(cè)電路
▲ 圖3 三相電機(jī)驅(qū)動(dòng)高端電流檢測(cè)
在上面三個(gè)電流檢測(cè)應(yīng)用中,如果使用PWM驅(qū)動(dòng),那么在電流檢測(cè)電阻上的共模電壓的擺動(dòng)范圍是從0V到電池電壓。這種PWM輸入信號(hào)是一個(gè)周期性,高頻,快速上升下降的特性,是由電路中功率場(chǎng)效應(yīng)管所產(chǎn)生的。因此,用于對(duì)高端電流分流器進(jìn)行信號(hào)處理的運(yùn)算放大器需要能夠同時(shí)具有極強(qiáng)的共模抑制能力、增益高、精確度高、(電壓、電流)偏置低的特點(diǎn)。
圖1所示的電磁線圈驅(qū)動(dòng)電路中,MOS場(chǎng)效應(yīng)管驅(qū)動(dòng)線圈的電流總是從上往下流動(dòng),因此單向電流檢測(cè)即可滿足要求。但在圖2,圖3所示的電機(jī)驅(qū)動(dòng)電路中,電流是雙向的,因此需要電路能夠處理正負(fù)電流信號(hào)。
設(shè)計(jì)者會(huì)發(fā)現(xiàn)現(xiàn)在有很多半導(dǎo)體公司提供了不同用于放大高端電流檢測(cè)的芯片。其中一個(gè)重要值得注意的現(xiàn)象,那就是在所有可備選的電流檢測(cè)IC芯片里,可以分成兩大類別:一類為電流檢測(cè)放大芯片,另外一類是 差分放大芯片 。
這里,我們將會(huì)指出和解釋上述兩類信號(hào)處理芯片的主要差別,幫助電子工程師面對(duì)應(yīng)用需求時(shí)選擇最適合的高端電流檢測(cè)方案。下面以雙向差分高電壓運(yùn)算放大器 AD8206[3] 與雙向電流檢測(cè)放大器 AD8210[4] 為例進(jìn)行對(duì)比。這兩款運(yùn)放具有相同的外部管腳,都可以用于高端電流檢測(cè),但他們的性能和內(nèi)部結(jié)構(gòu)卻不相同。那么問(wèn)題來(lái)了,在實(shí)際應(yīng)用中究竟選擇哪一種方案呢? 。
§02 工作基本原理
圖4給出了AD8206集成高電壓差分放大器,可以最高承受65V的功波電壓。芯片輸入端使用了 16.7:1 的反壓電阻將共模電壓限制在運(yùn)放A1的輸入電壓范圍內(nèi)??上В斎敕謮弘娮枰矊⒉罘中盘?hào)做了等比例的衰減,因此通過(guò)A1、A2兩級(jí)提供的 344V/V 的電壓增益,可以獲得 20V/V 整體電壓放大倍數(shù)。
▲ 圖4 AD8206簡(jiǎn)化原理圖
為了實(shí)現(xiàn)雙向電流檢測(cè),可以通過(guò)一個(gè)低阻參考電壓源為AD8206中輸出放大器A2的正輸入端設(shè)置一個(gè)正的參考電壓。該芯片甚至可以在共模電壓為負(fù)的時(shí)候繼續(xù)提供對(duì)電流分流電阻上的電壓信號(hào)的放大。
下圖(圖5)給出了最近剛推出的高電壓電流傳感器放大電路AD8210,它的功能與AD8206 相類似,管腳定義都一樣,但它的工作原理卻不同,也帶來(lái)了不同的技術(shù)指標(biāo)。
▲ 圖5 AD8210內(nèi)部功能圖
最大的區(qū)別在于AD8210的輸入并不使用衰減電阻網(wǎng)絡(luò)來(lái)減少高的功波電壓,它的輸入端使用 XFCB IC的制作工藝所產(chǎn)生的高壓三極管,對(duì)應(yīng)的VCE可以高達(dá)65V,從而可以承受高達(dá)65V的公模輸入電壓。
AD8210對(duì)于小的電流差分信號(hào)進(jìn)行放大的方式參加圖5。芯片上第一放大器A1的正負(fù)兩端分別通過(guò)R1、R2連接到電流采樣電阻兩端,A1通過(guò)控制三極管Q1,Q2導(dǎo)通電流來(lái)抵消在正負(fù)輸入端的電壓。Q1,Q2的導(dǎo)通電流在內(nèi)部精確匹配的電阻上產(chǎn)生成比例的電壓(已經(jīng)沒有了共模電壓了),經(jīng)過(guò)放大器A2放大輸出。A2由+5V供電,輸出的電壓與輸入差分電壓的比例為 20:1 。
AD8210電流放大器的電路結(jié)構(gòu)中輸入結(jié)構(gòu)要求輸入信號(hào)功波電壓需要大于 2V 或者 3V ,不能小于0。在AD8210內(nèi)部通過(guò)內(nèi)置的上拉電阻提升A1輸入電壓,這樣就可以使得輸入共模電壓可以低至 -2V 。
§03 兩種芯片的差異
很顯然,電流傳感放大器(AD8210)與差分放大器(AD8206)在工作機(jī)制上有明顯的差異。前者是將輸入差分信號(hào)轉(zhuǎn)換成對(duì)地的不同電流,再由芯片內(nèi)部的電阻轉(zhuǎn)換成沒有共模電壓的差分信號(hào)經(jīng)由后級(jí)運(yùn)發(fā)放大輸出,芯片主要依靠高壓半導(dǎo)體工藝來(lái)抵抗共模高壓的。而后者則是通過(guò)輸入衰減電阻網(wǎng)絡(luò)將信號(hào)進(jìn)行統(tǒng)一衰減后,再利用差分放大對(duì)輸入信號(hào)中的差分信號(hào)進(jìn)行放大,芯片則依靠電阻網(wǎng)絡(luò)來(lái)衰減共模高壓的。
雖然在兩個(gè)芯片的數(shù)據(jù)手冊(cè)中已經(jīng)將它們的主要性能指標(biāo)進(jìn)行了說(shuō)明,但一些基于內(nèi)部結(jié)構(gòu)差異所帶來(lái)的不一樣則不能從芯片數(shù)據(jù)手冊(cè)中立即看清楚。下面列出一些關(guān)鍵點(diǎn),幫助設(shè)計(jì)最佳的解決方案。
1、放大器帶寬
由于對(duì)輸入信號(hào)的衰減,所以通過(guò)差分放大方案通常只有電流傳感放大器的頻率響應(yīng)帶寬的 五分之一 左右。盡管如此,這兩款芯片的帶寬還是能夠滿足大部分應(yīng)用需求。
比如對(duì)于電磁鐵驅(qū)動(dòng)中,通常需要大于20kHz的PWM驅(qū)動(dòng),考慮到噪聲對(duì)于電流信號(hào)放大帶寬也要求大于20kHz。對(duì)于電磁鐵控制往往著重考慮平均電流的穩(wěn)定性,所以對(duì)于信號(hào)帶寬要求不高。但在電機(jī)控制中的電流采樣中,特別是對(duì)PWM信號(hào)控制下的電流順時(shí)電流采集,則要求更高的電流放大帶寬,此時(shí)就需要考慮使用電流傳感放大器(AD8210)替代AD8206了,它可以輸出電流信號(hào)更準(zhǔn)確的電流波形。
▲ 電流波形與AD8206輸出的電壓波形
2、共模抑制比
對(duì)于共模電壓的抑制性能方面,電流放大器可以提供更高的共模電壓抑制(CMR:Common-Mode Rejection)性能。比如AD8210,通過(guò)內(nèi)部精確匹配的高壓三極管,可以提供高達(dá) 100-dB 的CMR。依賴于衰減電阻網(wǎng)絡(luò)的AD8206,由于只能做到0.01%的精度,因此它的的CMR為 80-dB 左右。
3.外部濾波網(wǎng)絡(luò)影響
為了抑制電流噪聲,在放大電路輸入端增加RC低通濾波器。比如下圖中,就使用了Rf,Cf組成了電流信號(hào)的低通濾波器。
▲ 圖6 輸入濾波網(wǎng)絡(luò)
對(duì)于差模放大器,它的輸入電阻阻抗大于100kΩ。比如AD8206它的輸入電阻為200kΩ,如果外部電流濾波電阻Rf為200歐姆,所產(chǎn)生的增益誤差大約為 0.1%。如果兩個(gè)低通濾波器電阻Rf之間的匹配誤差也在1%左右,那么所產(chǎn)生的CMR影響大約 94-dB ,不會(huì)對(duì)器件本身所具有的 80-dB 造成很大的 影響。
但是對(duì)于電流傳感方式的放大器,它具有很高的公模輸入電阻。但為了將輸入差分電壓轉(zhuǎn)換成差分電流,則放大器的輸入電阻Rin則只有5kΩ左右。比如AD8210它的Rin為3.5k歐姆。由此外部低通濾波器所帶來(lái)的增益誤差則高達(dá) 5.4% !同時(shí),CMR也降低到 59-dB 。
所以在采用電流放大器時(shí),對(duì)于外部低通濾波網(wǎng)絡(luò)參數(shù)需要特別考慮,比如濾波電阻最好小于10歐姆。
4、輸入過(guò)載
在偶然情況下,如果負(fù)載出現(xiàn)了過(guò)壓、過(guò)流,這樣就會(huì)在電流傳感放大器AD8210兩端造成極大的差分電壓,從而可以引起芯片的損壞。對(duì)于采用差分放大的AD8206來(lái)說(shuō),對(duì)于負(fù)載面臨的過(guò)流、過(guò)壓則會(huì)有更寬的承受范圍,并不容易引起芯片的崩潰。
5、反向電壓保護(hù)
在有些情況下,可能出現(xiàn)設(shè)備電源電壓接反,這樣就會(huì)在電流放大器兩端產(chǎn)生復(fù)制非常高的負(fù)共模電壓。具有分壓電阻網(wǎng)絡(luò)輸入的差分放大器(AD8206)對(duì)于這種偶然出現(xiàn)的負(fù)共模電壓有很強(qiáng)的的忍受能力,但對(duì)于AD8210則情況大為不妙了。由于它的輸入Rin阻值相對(duì)較小,大的負(fù)共模電壓就會(huì)使得芯片中的ESD二極管導(dǎo)通,從而引起內(nèi)部電路損壞。
6、輸入偏置電流
在一些低功耗應(yīng)用電路中,需要考慮芯片的靜態(tài)工作電流。對(duì)于AD8206它的輸入電阻網(wǎng)絡(luò)即使在芯片不供電的情況下,電阻網(wǎng)絡(luò)依然消耗高端電源電流。對(duì)應(yīng)的AD8210,則會(huì)在電路掉電之后,也將內(nèi)部的晶體管電路關(guān)閉,所以幾乎不再消耗任何電源電流了。因此,在電池供電的低功耗應(yīng)用中,AD8210可能會(huì)更合適一些。
§04 電流檢測(cè)方案總結(jié)
在電動(dòng)車、通訊、消費(fèi)類產(chǎn)品以及工業(yè)應(yīng)用中,高端電流檢測(cè)被廣泛應(yīng)用?;诓罘蛛妷悍糯蟮臋z測(cè)與基于電流檢測(cè)放大兩個(gè)檢測(cè)方案可以在設(shè)計(jì)中被采用。雖然這些IC在功能和管腳定義上相同,但面臨采集精度、系統(tǒng)可靠性方面要求高的時(shí)候,則需要根據(jù)兩者方案內(nèi)部機(jī)理不同考慮選擇合適的電流檢測(cè)方案。下面表格中給出了這兩種方案的對(duì)比。
【表格1 對(duì)比電流放大與差分放大方案】
參考資料
[1]High-Side Current Sensing: Difference Amplifier vs. Current-Sense Amplifier:
https://www.analog.com/en/analog-dialogue/articles/high-side-current-sensing.html
[2]本文原文的PDF下載:https://www.analog.com/media/en/analog-dialogue/volume-42/number-1/articles/high-side-current-sensing.pdf
[3]AD8206:https://www.analog.com/en/products/ad8206.html
[4]AD8210:https://www.analog.com/en/products/ad8210.html
(來(lái)源:面包板社區(qū),作者:TsinghuaJoking)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖