圖 1.
高速轉(zhuǎn)換器原理、作用分析
發(fā)布時(shí)間:2020-09-18 責(zé)任編輯:lina
【導(dǎo)讀】作為"現(xiàn)實(shí)世界"模擬域與 1 和 0 構(gòu)成的數(shù)字世界之間的關(guān)口,數(shù)據(jù)轉(zhuǎn)換器是現(xiàn)代信號(hào)處理中的關(guān)鍵要素之一。過(guò)去 30 年,數(shù)據(jù)轉(zhuǎn)換領(lǐng)域涌現(xiàn)出了大量創(chuàng)新技術(shù),這些技術(shù)不但助推了從醫(yī)療成像到蜂窩通信、再到消費(fèi)音視頻,各個(gè)領(lǐng)域的性能提升和架構(gòu)進(jìn)步,同時(shí)還為實(shí)現(xiàn)全新應(yīng)用發(fā)揮了重要作用。
作為"現(xiàn)實(shí)世界"模擬域與 1 和 0 構(gòu)成的數(shù)字世界之間的關(guān)口,數(shù)據(jù)轉(zhuǎn)換器是現(xiàn)代信號(hào)處理中的關(guān)鍵要素之一。過(guò)去 30 年,數(shù)據(jù)轉(zhuǎn)換領(lǐng)域涌現(xiàn)出了大量創(chuàng)新技術(shù),這些技術(shù)不但助推了從醫(yī)療成像到蜂窩通信、再到消費(fèi)音視頻,各個(gè)領(lǐng)域的性能提升和架構(gòu)進(jìn)步,同時(shí)還為實(shí)現(xiàn)全新應(yīng)用發(fā)揮了重要作用。
寬帶通信和高性能成像應(yīng)用的持續(xù)擴(kuò)張凸顯出 高速數(shù)據(jù)轉(zhuǎn)換的特殊重要性:轉(zhuǎn)換器要能處理帶寬范圍在 10 MHz 至 1 GHz 以上的信號(hào)。人們通過(guò)多種各樣的轉(zhuǎn)換器架構(gòu)來(lái)實(shí)現(xiàn)這些較高的速率,各有其優(yōu)勢(shì)。高速下在模擬域和數(shù)字域之間來(lái)回切換也對(duì)信號(hào)完整性提出了一些特殊的挑戰(zhàn)——不僅模擬信號(hào)如此,時(shí)鐘和數(shù)據(jù)信號(hào)亦是如此。了解這些問(wèn)題不僅對(duì)于組件選擇十分重要,而且甚至?xí)绊懻w系統(tǒng)架構(gòu)的選擇。
圖 1.
更快、更快、更快
在許多技術(shù)領(lǐng)域,我們習(xí)慣于把技術(shù)進(jìn)步與更高的速率關(guān)聯(lián)起來(lái): 從以太網(wǎng)到無(wú)線局域網(wǎng)再到蜂窩移動(dòng)網(wǎng)絡(luò),數(shù)據(jù)通信的實(shí)質(zhì)就是不斷提高數(shù)據(jù)傳輸速率。通過(guò)時(shí)鐘速率的進(jìn)步,微處理器、數(shù)字信號(hào)處理器和 FPGA 發(fā)展十分迅速。這些器件主要得益于尺寸不斷縮小的蝕刻工藝,結(jié)果造就出開(kāi)關(guān)速率更快、體積更小(而且功耗更低)的晶體管。這些進(jìn)步創(chuàng)造出一個(gè)處理能力和數(shù)據(jù)帶寬呈指數(shù)級(jí)增長(zhǎng)的環(huán)境。這些強(qiáng)大的數(shù)字引擎帶來(lái)了同樣呈指數(shù)級(jí)增長(zhǎng)的信號(hào)和數(shù)據(jù)處理需求:從靜態(tài)圖像到視頻,到帶寬頻譜,無(wú)論是有線還是無(wú)線,均是如此。運(yùn)行時(shí)鐘速率為 100 MHz 的處理器或許能有效地處理帶寬為 1 MHz 至 10 MHz 的信號(hào):運(yùn)行時(shí)鐘速率達(dá)數(shù) GHz 的處理器能夠處理帶寬達(dá)數(shù)百 MHz 的信號(hào)。
自然地,更強(qiáng)的處理能力、更高的處理速率會(huì)導(dǎo)致更快的數(shù)據(jù)轉(zhuǎn)換:寬帶信號(hào)擴(kuò)大其帶寬(往往達(dá)到物理或監(jiān)管機(jī)構(gòu)設(shè)定的頻譜極限),成像系統(tǒng)尋求提高每秒像素處理能力,以便更加快速地處理更高分辨率的圖像。系統(tǒng)架構(gòu)推陳出新,以利用極高的這種處理性能,其中還出現(xiàn)了并行處理的趨勢(shì),這可能意味著對(duì)多通道數(shù)據(jù)轉(zhuǎn)換器的需求。
架構(gòu)上的另一重要變化是走向多載波 / 多通道,甚至軟件定義系統(tǒng)的趨勢(shì)。傳統(tǒng)的模擬密集型系統(tǒng)在模擬域中完成許多信號(hào)調(diào)理工作(濾波、放大、頻率轉(zhuǎn)換);在經(jīng)過(guò)充分準(zhǔn)備后,對(duì)信號(hào)進(jìn)行數(shù)字化處理。一個(gè)例子是 FM 廣播:給定電臺(tái)的通道寬度通常為 200 kHz,F(xiàn)M 頻段范圍為 88 MHz 至 108 MHz。傳統(tǒng)接收器把目標(biāo)電臺(tái)的頻率轉(zhuǎn)換成 10.7 MHz 的中頻,過(guò)濾掉所有其他通道,并把信號(hào)放大到最佳解調(diào)幅度。多載波架構(gòu)將整個(gè) 20 MHz FM 頻段數(shù)字化,并利用數(shù)字處理技術(shù)來(lái)選擇和恢復(fù)目標(biāo)電臺(tái)。雖然多載波方案需要采用復(fù)雜得多的電路,但它具有極大的系統(tǒng)優(yōu)勢(shì):系統(tǒng)可以同時(shí)恢復(fù)多個(gè)電臺(tái),包括邊頻電臺(tái)。如果設(shè)計(jì)得當(dāng),多載波系統(tǒng)甚至可以通過(guò)軟件重新配置,以支持新的標(biāo)準(zhǔn)(例如,分配在無(wú)線電邊頻帶的新型高清電臺(tái))。這種方式的最終目標(biāo)是采用可以接納所有頻帶的寬帶數(shù)字化儀和可以恢復(fù)任何信號(hào)的強(qiáng)大處理器:這即是所謂的軟件定義無(wú)線電。其他領(lǐng)域中有等效的架構(gòu)——軟件定義儀表、軟件定義攝像頭等。我們可以把這些當(dāng)作虛擬化的信號(hào)處理等效物。使得諸如此類靈活架構(gòu)成為可能的是強(qiáng)大的數(shù)字處理技術(shù)以及高速、高性能數(shù)據(jù)轉(zhuǎn)換技術(shù)。
圖 2. 多載波示例
帶寬和動(dòng)態(tài)范圍
無(wú)論是模擬還是數(shù)字信號(hào)處理,其基本維度都是帶寬和動(dòng)態(tài)范圍——這兩個(gè)因素決定著系統(tǒng)實(shí)際可以處理的信息量。在通信領(lǐng)域,克勞德•香農(nóng)的理論就使用這兩個(gè)維度來(lái)描述一個(gè)通信通道可以攜帶的信息量的基本理論限值,但其原理卻適用于多個(gè)領(lǐng)域。對(duì)于成像系統(tǒng),帶寬決定著給定時(shí)間可以處理的像素量,動(dòng)態(tài)范圍決定著最暗的可覺(jué)察光源與像素飽和點(diǎn)之間的強(qiáng)度或色彩范圍。
圖 3. 信號(hào)處理的基本維度
數(shù)據(jù)轉(zhuǎn)換器的可用帶寬有一個(gè)由奈奎斯特采樣理論設(shè)定的基本理論限值——為了表示或處理帶寬為 F 的信號(hào),我們需要使用運(yùn)行采樣速率至少為 2 F 的數(shù)據(jù)轉(zhuǎn)換器(請(qǐng)注意,本法則適用于任何采樣數(shù)據(jù)系統(tǒng)——模擬或數(shù)字都適用)。對(duì)于實(shí)際系統(tǒng),一定量的過(guò)采樣可極大地簡(jiǎn)化系統(tǒng)設(shè)計(jì),因此,更典型的數(shù)值是信號(hào)帶寬的 2.5 至 3 倍。如前所述,不斷增加的處理能力可提高系統(tǒng)處理更高帶寬的能力,而蜂窩電話、電纜系統(tǒng)、有線和無(wú)線局域網(wǎng)、圖像處理以及儀器儀表等系統(tǒng)都在朝著帶寬更高的系統(tǒng)發(fā)展。這種不斷提高帶寬需求要求數(shù)據(jù)轉(zhuǎn)換器具備更高的采樣速率。
如果說(shuō)帶寬這個(gè)維度直觀易懂,那么動(dòng)態(tài)范圍這個(gè)維度則可能稍顯晦澀。在信號(hào)處理中,動(dòng)態(tài)范圍表示系統(tǒng)可以處理且不發(fā)生飽和或削波的最大信號(hào)與系統(tǒng)可以有效捕獲的最小信號(hào)之間的分布范圍。我們可以考慮兩類動(dòng)態(tài)范圍:可配置動(dòng)態(tài)范圍可以通過(guò)在低分辨率模數(shù)轉(zhuǎn)換器(ADC)之前放置一個(gè)可編程增益放大器(PGA)來(lái)實(shí)現(xiàn)(假設(shè)對(duì)于 12 位的可配置動(dòng)態(tài)范圍,在一個(gè) 8 位轉(zhuǎn)換器前放置一個(gè) 4 位 PGA):當(dāng)增益設(shè)為低值時(shí),這種配置可以捕獲大信號(hào)而不會(huì)超過(guò)轉(zhuǎn)換器的范圍。當(dāng)信號(hào)超小時(shí),可將 PGA 設(shè)為高增益,以將信號(hào)放大到轉(zhuǎn)換器的噪底以上。信號(hào)可能是一個(gè)信號(hào)強(qiáng)或信號(hào)弱的電臺(tái),也可能是成像系統(tǒng)中的一個(gè)明亮或暗淡的像素。對(duì)于一次只嘗試恢復(fù)一個(gè)信號(hào)的傳統(tǒng)信號(hào)處理架構(gòu)來(lái)說(shuō),這種可配置動(dòng)態(tài)范圍可能是非常有效的。
瞬時(shí)動(dòng)態(tài)范圍更加強(qiáng)大:在這種配置中,系統(tǒng)擁有充足的動(dòng)態(tài)范圍,能夠同時(shí)捕獲大信號(hào)而不產(chǎn)生削波現(xiàn)象,同時(shí)還能恢復(fù)小信號(hào)——現(xiàn)在,我們可能需要一個(gè) 14 位的轉(zhuǎn)換器。該原理適用于多種應(yīng)用——恢復(fù)強(qiáng)電臺(tái)或弱電臺(tái)信號(hào),恢復(fù)手機(jī)信號(hào),或者恢復(fù)圖像的超亮和超暗部分。在系統(tǒng)傾向使用更加復(fù)雜的信號(hào)處理算法的同時(shí),對(duì)動(dòng)態(tài)范圍的需求也是水漲船高的走向。在這種情況下,系統(tǒng)可以處理更多信號(hào)——如果全部信號(hào)都具有相同的強(qiáng)度,并且需要處理兩倍的信號(hào),則需要增加 3 dB 的動(dòng)態(tài)范圍(在所有其他條件相等的情況下)??赡芨匾氖牵缜八?,如果系統(tǒng)需要同時(shí)處理強(qiáng)信號(hào)和弱信號(hào),則動(dòng)態(tài)范圍的增量要求可能要大得多。
動(dòng)態(tài)范圍的不同衡量指標(biāo)
在數(shù)字信號(hào)處理中,動(dòng)態(tài)范圍的關(guān)鍵參數(shù)是信號(hào)表示中的位數(shù),或稱字長(zhǎng):一個(gè) 32 位處理器的動(dòng)態(tài)范圍多于一個(gè) 16 位的處理器。過(guò)大的信號(hào)將發(fā)生削波——這是一種高度非線性的運(yùn)算,會(huì)破壞多數(shù)信號(hào)的完整性。過(guò)小的信號(hào)——幅度小于 1 LSB——將變得不可檢測(cè)并丟失掉。這個(gè)有限分辨率通常稱為量化誤差,或量化噪聲,在確立可檢測(cè)性下限時(shí)可能是一個(gè)重要因素。
量化噪聲也是混合信號(hào)系統(tǒng)中的一個(gè)因素,但有多個(gè)因素決定著數(shù)據(jù)轉(zhuǎn)換器的可用動(dòng)態(tài)范圍,而且每個(gè)因素都自己的動(dòng)態(tài)范圍
信噪比(SNR)——轉(zhuǎn)換器的滿量程與頻帶總噪聲之比。該噪聲可能來(lái)自量化噪聲(如上所述)、熱噪聲(所有現(xiàn)實(shí)系統(tǒng)中都存在)或其他誤差項(xiàng)(如抖動(dòng))。
靜態(tài)非線性度——微分非線性度(DNL)和積分非線性度(INL)——衡量從數(shù)據(jù)轉(zhuǎn)換器輸入端到輸出端的直流傳遞函數(shù)的非理想程度的指標(biāo)(DNL 通常確定成像系統(tǒng)的動(dòng)態(tài)范圍)。
總諧波失真——靜態(tài)和動(dòng)態(tài)非線性度會(huì)產(chǎn)生諧音,可能有效地屏蔽其他信號(hào)。THD 通常會(huì)限制音頻系統(tǒng)的有效動(dòng)態(tài)范圍。
無(wú)雜散動(dòng)態(tài)范圍(SFDR)——考慮相對(duì)于輸入信號(hào)的最高頻譜雜散,無(wú)論是二階還是三階諧波時(shí)鐘饋通,甚至是 60 Hz 的"嗡嗡"噪聲。由于頻譜音或雜散可能屏蔽小信號(hào),因此,SFDR 是用來(lái)表示許多通信系統(tǒng)中可用動(dòng)態(tài)范圍的一個(gè)良好指標(biāo)。
還有其他技術(shù)規(guī)格——事實(shí)上,每種應(yīng)用可能都有自己的有效動(dòng)態(tài)范圍描述方式。開(kāi)始時(shí),數(shù)據(jù)轉(zhuǎn)換器的分辨率是其動(dòng)態(tài)范圍的一個(gè)良好替代指標(biāo),但在真正決定時(shí)選擇正確的技術(shù)規(guī)格是非常重要的。關(guān)鍵原則是,越多越好。雖然許多系統(tǒng)可以立即意識(shí)到需要更高的信號(hào)處理帶寬,但對(duì)動(dòng)態(tài)范圍的需求卻可能不是如此直觀,即便要求更加苛刻。
值得注意的是,盡管帶寬和動(dòng)態(tài)范圍是信號(hào)處理的兩個(gè)主要維度,但還有必要考慮第三個(gè)維度,即效率:這有助于我們回答這樣一個(gè)問(wèn)題:"為了實(shí)現(xiàn)額外性能,我需要付出多少成本?"我們可以從購(gòu)置價(jià)格來(lái)看成本,但對(duì)數(shù)據(jù)轉(zhuǎn)換器和其他電子信號(hào)處理應(yīng)用來(lái)說(shuō),一種更加純粹的、衡量成本的技術(shù)手段是功耗。性能越高的系統(tǒng)——更大的帶寬或動(dòng)態(tài)范圍——往往要消耗更多的電能。隨著技術(shù)的進(jìn)步,我們都試圖在提高帶寬和動(dòng)態(tài)范圍的同時(shí)減少功耗。
主要應(yīng)用
如前所述,每種應(yīng)用在基本信號(hào)維度方面都有著不同的要求,而在給定的應(yīng)用中,則可能有多種不同的性能。例如,一個(gè) 100 萬(wàn)像素的攝像頭與一個(gè) 1000 萬(wàn)像素的攝像頭。圖 4 展示了一些不同應(yīng)用通常要求的帶寬和動(dòng)態(tài)范圍。該圖的上半部分一般稱為高速——采樣速率為 25 MHz 及以上的轉(zhuǎn)換器,可以有效處理 10 MHz 或以上的帶寬。
圖 4. 一些典型應(yīng)用及其對(duì)帶寬(速率)和動(dòng)態(tài)范圍(分辨率位數(shù))的要求
需要注意的是,該應(yīng)用圖并非靜止不變的。現(xiàn)有應(yīng)用可能利用新的、性能更高的技術(shù)來(lái)提升其功能——例如,高清攝像機(jī)或者分辨率更高的 3D 超聲設(shè)備等。此外,每年還會(huì)涌現(xiàn)出全新的應(yīng)用——很大一部分新應(yīng)用將處于性能邊界的外邊緣處: 得益于高速與高分辨率的新組合。結(jié)果使轉(zhuǎn)換器性能邊緣不斷擴(kuò)大,就像池塘里的漣漪一樣。
同時(shí)還應(yīng)記住,多數(shù)應(yīng)用都需要關(guān)注功耗問(wèn)題:對(duì)于便攜式 / 電池供電式應(yīng)用,功耗可能是主要技術(shù)限制條件,但是,即使是線路供電系統(tǒng),我們也開(kāi)始發(fā)現(xiàn),信號(hào)處理元件(模擬也好,數(shù)字也好)的功耗最終會(huì)限制系統(tǒng)在給定物理區(qū)域的性能
技術(shù)發(fā)展趨勢(shì)和創(chuàng)新——如何實(shí)現(xiàn)……
鑒于這些應(yīng)用在不斷推高對(duì)高速數(shù)據(jù)轉(zhuǎn)換器性能的要求,業(yè)界以持續(xù)技術(shù)進(jìn)步的方式對(duì)此做出了回應(yīng)。技術(shù)對(duì)高級(jí)高速數(shù)據(jù)轉(zhuǎn)換器的推動(dòng)來(lái)自以下幾個(gè)因素:
工藝技術(shù):摩爾定律與數(shù)據(jù)轉(zhuǎn)換器——半導(dǎo)體工業(yè)在持續(xù)推動(dòng)數(shù)字處理性能方面的成就有目共睹,其主要驅(qū)動(dòng)因素是晶圓處理工藝在走向更細(xì)間距微影蝕刻工藝方面取得的巨大進(jìn)步。深亞微米 CMOS 晶體管的開(kāi)關(guān)速率遠(yuǎn)遠(yuǎn)超過(guò)其前輩,使控制器、數(shù)字處理器和 FPGA 的運(yùn)行時(shí)鐘速率邁上了數(shù) GHz 的臺(tái)階。像數(shù)據(jù)轉(zhuǎn)換器一樣的混合信號(hào)電路也可以利用蝕刻工藝領(lǐng)域取得的這些進(jìn)步,借"摩爾定律"之風(fēng)達(dá)到更高的速率——但對(duì)混合信號(hào)電路來(lái)說(shuō),這是有代價(jià)的:更先進(jìn)的蝕刻工藝的工作電源電壓有不斷降低的趨勢(shì)。這意味著,模擬電路的信號(hào)擺幅在縮小,增加了將模擬信號(hào)維持在熱噪底以上的困難:以縮水的動(dòng)態(tài)范圍為代價(jià)獲得更高的速率。
高級(jí)架構(gòu)(這不是原始時(shí)代的數(shù)據(jù)轉(zhuǎn)換器)——在半導(dǎo)體工藝大步發(fā)展的同時(shí),過(guò)去 20 年中,高速數(shù)據(jù)轉(zhuǎn)換器架構(gòu)領(lǐng)域也出現(xiàn)了數(shù)波創(chuàng)新浪潮,為以驚人的功效實(shí)現(xiàn)更高的帶寬、更大的動(dòng)態(tài)范圍做出了巨大貢獻(xiàn)。傳統(tǒng)上,有多種架構(gòu)方式用于高速模數(shù)轉(zhuǎn)換器,包括全并行架構(gòu)(ash)、折疊架構(gòu)(folding)、交織架構(gòu)(interleaved)和流水線架構(gòu)(pipeline),這些架構(gòu)方式至今仍然非常流行。后來(lái),傳統(tǒng)上用于低速應(yīng)用的架構(gòu)也加入高速應(yīng)用陣營(yíng),包括逐次逼近寄存器(SAR)和 -,這些架構(gòu)專門針對(duì)高速應(yīng)用進(jìn)行了原創(chuàng)性的改動(dòng)。每種架構(gòu)都有自己的優(yōu)勢(shì)和劣勢(shì):某些應(yīng)用一般根據(jù)這些折衷來(lái)確定最佳架構(gòu)。對(duì)于高速 DAC 來(lái)說(shuō),首選架構(gòu)一般是開(kāi)關(guān)電流模式結(jié)構(gòu),不過(guò),這類結(jié)構(gòu)有許多變體;開(kāi)關(guān)電容結(jié)構(gòu)的速率穩(wěn)步提高,在一些嵌入式高速應(yīng)用中仍然十分流行。
數(shù)字輔助方法——多年以來(lái),在工藝和架構(gòu)以外,高速數(shù)據(jù)轉(zhuǎn)換器電路技術(shù)也取得了輝煌的創(chuàng)新成就。校準(zhǔn)方法已有數(shù)十年的歷史,在補(bǔ)償集成電路元件失配以及提高電路動(dòng)態(tài)范圍方面發(fā)揮著至關(guān)重要的作用。校準(zhǔn)已經(jīng)超越靜態(tài)誤差校正的范疇,越來(lái)越多地用于補(bǔ)償動(dòng)態(tài)非線性度,包括建立誤差和諧波失真。
總之,這些領(lǐng)域的創(chuàng)新極大地促進(jìn)了高速數(shù)據(jù)轉(zhuǎn)換的發(fā)展。
實(shí)現(xiàn)
實(shí)現(xiàn)寬帶混合信號(hào)系統(tǒng)不僅僅要選擇正確的數(shù)據(jù)轉(zhuǎn)換器——這些系統(tǒng)可能對(duì)信號(hào)鏈的其他部分有著嚴(yán)苛的要求。同樣,挑戰(zhàn)是在較寬的帶寬范圍內(nèi)實(shí)現(xiàn)優(yōu)秀的動(dòng)態(tài)范圍——使更多的信號(hào)進(jìn)出數(shù)字域,充分利用數(shù)字域的處理能力。
寬帶和信號(hào)調(diào)理—在傳統(tǒng)單載波系統(tǒng)中,信號(hào)調(diào)理就是盡快消除無(wú)用信號(hào),然后放大目標(biāo)信號(hào)。這往往涉及選擇性濾波以及針對(duì)目標(biāo)信號(hào)微調(diào)的窄帶系統(tǒng)。這些經(jīng)過(guò)微調(diào)的電路在實(shí)現(xiàn)增益方面可能非常有效,而且在某些情況下,可以利用頻率規(guī)劃技術(shù)來(lái)確保將諧波或其他雜散排除在帶外。寬帶系統(tǒng)不能使用這些窄帶技術(shù),而且在這些系統(tǒng)中實(shí)現(xiàn)寬帶放大可能面臨巨大的挑戰(zhàn)。
數(shù)據(jù)接口—傳統(tǒng)的 CMOS 接口不支持大大超過(guò) 100 MHz 的數(shù)據(jù)速率——而且低電壓差分?jǐn)[幅(LVDS)數(shù)據(jù)接口運(yùn)行速率達(dá) 800 MHz 至 1 GHz。對(duì)于較大數(shù)據(jù)速率,我們可以使用多個(gè)總線接口,或者使用 SERDES 接口?,F(xiàn)代的數(shù)據(jù)轉(zhuǎn)換器采用的是最高速率達(dá) 12.5 GSPS 的 SERDES 接口(規(guī)格見(jiàn) JESD204B 標(biāo)準(zhǔn))——可以用多條數(shù)據(jù)通道來(lái)支持轉(zhuǎn)換器接口中分辨率和速率的不同組合。這些接口本身可能十分復(fù)雜。
時(shí)鐘接口—就系統(tǒng)中使用的時(shí)鐘的質(zhì)量來(lái)說(shuō),高速信號(hào)的處理也可能十分困難。時(shí)域中的抖動(dòng) / 誤差會(huì)轉(zhuǎn)換成信號(hào)中的噪聲或誤差,如圖 5 所示。在處理速率大于 100 MHz 的信號(hào)時(shí),時(shí)鐘抖動(dòng)或相位噪聲可能成為轉(zhuǎn)換器可用動(dòng)態(tài)范圍的一個(gè)限制因素。數(shù)字級(jí)時(shí)鐘可能無(wú)法勝任這類系統(tǒng),可能需要使用高性能時(shí)鐘。
圖 5. 時(shí)鐘誤差變成信號(hào)誤差的方式
結(jié)論
走向更寬帶寬信號(hào)和軟件定義系統(tǒng)的步伐不斷加快,業(yè)界不斷推陳出新,涌現(xiàn)出構(gòu)建更好、更快數(shù)據(jù)轉(zhuǎn)換器的創(chuàng)新方法,將帶寬、動(dòng)態(tài)范圍和功效三個(gè)維度推上了新的臺(tái)階。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開(kāi)啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開(kāi)售Nordic Semiconductor nRF9151-DK開(kāi)發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開(kāi)啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開(kāi)關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖