負(fù)載階躍響應(yīng)
帶漏電感的反激式轉(zhuǎn)換器平均模型
發(fā)布時間:2021-03-11 來源:Christophe Basso 責(zé)任編輯:wenwei
【導(dǎo)讀】在本文第一部分,我們已說明了由漏電感帶來的開關(guān)效應(yīng):有效占空比的減少,帶來在主電源開關(guān)關(guān)斷后次級二極管導(dǎo)通時間的延長和次級端電流的延遲。因此,輸出電壓低于原來的公式預(yù)測,在RCD鉗位網(wǎng)絡(luò)中的功率耗散增加。鑒于漏電感對工作波形的影響,研究其對反激式轉(zhuǎn)換器小信號響應(yīng)的影響是有趣的。但在我們進行小信號分析前,需要一個好的平均模型。
負(fù)載階躍響應(yīng)
第一部分介紹的逐周期模型如圖1所示,現(xiàn)在包括一個可變負(fù)載。在這仿真中,負(fù)載范圍將從8至6 不等,跨度為10 μs,同時記錄輸出。轉(zhuǎn)換器運行在開環(huán)配置,我們會將漏電感從1 μH增加至50 μH,而其它工作參數(shù)保持不變(占空比40%)。
圖1:這開環(huán)簡化的反激式轉(zhuǎn)換器將讓我們探索由漏電感帶來的影響
我們已采集圖2中不同漏電感的輸出電壓。垂直刻度是每等分620 mV,對每一波形都相同,但偏移量有所改變以讓所有曲線進入圖中。第一個注釋涉及到振鈴。在幾乎沒有漏電感(1 μH)時,響應(yīng)振鈴和阻尼很輕。但負(fù)載電流的步幅不影響輸出電壓。隨著漏電感增加,振鈴開始減弱,振蕩迅速停止,這時lleak = 50 μH。然而,漏電感越大,輸出電壓越低(從近20 V至17.6 V),靜態(tài)電壓下降幅度越大:近0 V時無漏電感,達400 mV時漏電感最大。從這快速仿真中,我們可觀察到漏電感減弱瞬態(tài)響應(yīng),影響穩(wěn)態(tài)輸出電壓(如第一部分所預(yù)測),也會降低輸出阻抗。為探索漏電感對頻率響應(yīng)的影響,我們需要一個大信號模型然后線性化以給出轉(zhuǎn)換器的小信號表達式。從這小信號模型中,我們應(yīng)該能分析表達受漏電感影響的反激式轉(zhuǎn)換器的控制-輸出傳遞函數(shù)。
圖2:不同的漏電感影響開環(huán)反激式轉(zhuǎn)換器的幾個參數(shù)
大信號模型
脈寬調(diào)制(PWM)開關(guān)本身就能很好地模擬一個反激式轉(zhuǎn)換器。由Dr. Vatché Vorpérian于90年代提出,最簡單的模擬一個工作于CCM模式的雙開關(guān)電壓模式DC-DC轉(zhuǎn)換器的大信號響應(yīng)和固定開關(guān)頻率如圖3 。該原理包括平均兩個連接端之間的波形,“a”(有源)、“p”(無源)和“c”(共有的)以描述 一組連續(xù)時間的電流/電壓等式。Vorpérian表明,配置如圖3的電流和電壓源相當(dāng)于考慮將理想的直流變壓器連接到終端 a-c-p,受匝數(shù)比d、占空比影響。
圖3:不可能有比PWM開關(guān)模型更簡單的了!
模型是不變的,說明它可替代其它DC-DC轉(zhuǎn)換器,所有描述這PWM開關(guān)的等式保持不變。圖3所示的模型是大信號版本。如果SPICE可提供這模型的小信號響應(yīng)–因為SPICE是線性求解器,它將在運行仿真前將模型線性化–我們不能使用它的原型來確立控制-輸出傳遞函數(shù)。我們需要PWM開關(guān)的線性化或小信號版本。如圖4所示,您可看到通用架構(gòu),并看它如何轉(zhuǎn)化為工作中的SPICE模型。對那些對PWM開關(guān)的進一步詳細(xì)信息感興趣的,有詳盡介紹及大量工作實例。
圖4:PWM開關(guān)的小信號版本使原型稍微復(fù)雜
請注意源包括幾個與產(chǎn)品的直流和交流值相關(guān)的術(shù)語。例如,系列源B3表示為{Vap}除以{D},乘以V(d)。{Vap}代表端子“a”和“p”之間的穩(wěn)態(tài)電壓,而{D}是穩(wěn)態(tài)占空比。這些都是固定參數(shù),對應(yīng)于一個工作點。例如,圖3中降壓轉(zhuǎn)換器的{Vap}是Vin. d,占空比可以是在0和1 V(0至100%)之間的任意值。
圖5顯示了如何使用PWM開關(guān)模型仿真反激式轉(zhuǎn)換器,它與特定變壓器的等效比為1:d??蚣茈妷菏怯煞抡嫫饔嬎愠龅钠命c。驗證它們在適當(dāng)?shù)南薅葍?nèi)很重要。有時結(jié)算器未能確定正確的操作點而是提供一個動態(tài)響應(yīng)。這顯然是個錯誤的結(jié)果,必須丟棄它,直到找到一個新的正確的操作點。從第一部分,我們知道CCM反激式轉(zhuǎn)換器理想的(無漏電感)直流傳遞函數(shù)是
(1)
這是原理圖顯示的整個負(fù)載電阻:我們的偏置點是正確的。現(xiàn)在我們有了大信號模型,我們可在圖4 的基礎(chǔ)上推出小信號應(yīng)用。為此,我們需要計算幾個固定參數(shù),Vap和端子“c”的平均電流Ic。一旦您將PWM開關(guān)模型調(diào)整到適合反激式轉(zhuǎn)換器結(jié)構(gòu),在端子“a”和“p”之間的電壓Vap變?yōu)檩斎腚妷篤in減去反射電壓Vout/N(忽略次級二極管Vf)。由于這電壓是負(fù)數(shù),我們有
(2)
端子“c”的電流是流過初級電感Lp的平均電流。導(dǎo)通或dTsw期間這電流的一部分在端子“a”循環(huán),關(guān)斷或 (1–d)Tsw期間流過端子“p”。圖7顯示端子“a”和“c”的典型的瞬時波形。根據(jù)圖5中的應(yīng)用原理圖,端子“a”的平均電流也在輸入源循環(huán)以產(chǎn)生Pin:
(3)
圖5:PWM開關(guān)模型用于CCM反激式轉(zhuǎn)換器的一個實際應(yīng)用
圖6:PWM開關(guān)模型的小信號版本僅需幾個控制源。
由圖7,我們可寫
(4)
將(4)代入(3),并考慮100%的能效(Pin= Pout),我們有
(5)
因此
(6)
圖7:端子“c”的電流是初級電感Lp電流。
此表達式按圖5中的參數(shù)窗口計算出一個參數(shù)并傳遞給受控源(花括號之間的值)。我們現(xiàn)在可仿真并采集一個共用圖中的所有曲線。我們在圖8中繪制出來,所有曲線(幅值和相位)完全重合。這是一個CCM反激式轉(zhuǎn)換器從占空比輸入到輸出的典型響應(yīng)。諧振頻率有個峰值,然后等效串聯(lián)電阻(ESR)rc 降至零,接下來是右半平面(RHP)相位從0開始進一步下降。
圖8:從3個不同模型(包括大信號模型、基于變壓器的電路和線性化版本)得到的頻率響應(yīng)完全重合。
考慮漏電感
在圖5中給出的平均模型,對模型施加的電壓是Vin。這電壓在dTsw期間偏置初級電感Lp。事實上,按第一部分,考慮漏電感,電壓分于漏電感和初級電感之間,形成分壓器Div:
(7)
該模型的第一次升級是由Vin*Div替代Vin。第二次改變涉及占空比d。我們在第一部分已看到,占空比受漏電感磁化時間d1Tsw影響。平均模型的有效占空比需要反應(yīng)這一事實,得出
(8)
d1取決于漏電感值(忽略次級端二極管壓降Vf)和谷底電流Iv
(9)
為計算谷底電流,我們可回頭看看圖7,可看到谷底電流實際上是平均電流Ic減去初級電感紋波的一半:
(10)
紋波電流是在ton或dTsw期間在串聯(lián)的Lp和lleak施加Vin帶來的偏移。因而谷底電流為
(11)
峰值電流以類似方法得出,只不過這方法是Ic加上而不是減去電感紋波的一半
(12)
在鉗位網(wǎng)絡(luò)循環(huán)的電流持續(xù)d2Tsw,漏電感復(fù)位時間。這時間當(dāng)然取決于lleak,但還有反射電壓Vout和鉗位電壓Vclp的因素。從第一部分我們已確定對應(yīng)的占空比為
(13)
圖9代表了導(dǎo)通期間產(chǎn)生影響的各種電流。低邊是電源開關(guān)電流,其上是漏電感電流。當(dāng)開關(guān)關(guān)斷,我們已看到電流幾乎立即(忽略Clump充電時間)流入鉗位網(wǎng)絡(luò)并迅速降至0。此時,漏電感復(fù)位,次級電流達到峰值。
圖9:在漏電感復(fù)位時間d2Tsw期間,電流在RCD網(wǎng)絡(luò)循環(huán)。
因此在鉗位二極管中循環(huán)的平均電流只是沿開關(guān)周期的小三角表面的平均值:
(14)
因為Ip由(12)計算,我們可在(14)建模的電流源連接一個RC網(wǎng)絡(luò),將得到一個平均鉗位電壓。在SPICE中,這電壓將用于確定如(13)描述的d2。這等式中的峰值電流取決于負(fù)載電阻的輸出電壓。這電壓取決于如第一部分所見的d1。當(dāng)您運行仿真,SPICE最終解出6-未知的/6-方程的系統(tǒng),有時可能無法確定正確答案。為使它覆蓋到正確的結(jié)果,.NODESET報告告知使用什么“種子(seed)”將有效地引導(dǎo)至正確的偏置點。這種子是我們建議在它運行前進行SPICE的鉗位電壓。最終的大信號模型出現(xiàn)在圖10中。附加的指令行是.NODESET V(clp) = 300 V。
現(xiàn)在的工作包括比較從逐周期模型到更新的平均模型的負(fù)載階躍響應(yīng)。選定幾個漏電感值,1 μH, 10 μH 和30 μH。由圖11、圖12和圖13證實,在逐周期模型和平均模型之間的一致性極佳。這些圖的左邊顯示大尺度響應(yīng),而右邊顯示放大版,證實平均模型與開關(guān)模型的曲線有多吻合。小的差異出現(xiàn)在鉗位電壓,特別在直流電平。此參數(shù)預(yù)測中的任何擴散導(dǎo)致了最終大的差異。圖14比較了在兩個模型中鉗位二極管陰極觀察到的電壓。兩條曲線吻合得很好,雖然小的偏差在這案例中產(chǎn)生了2.5%的誤差。這誤差隨lleak增加而加大,但對于大的lleak值,誤差保持在10%以內(nèi)。
圖10:更新的大信號模型現(xiàn)在包括漏電感的影響
圖11:漏電感為1-μH時的瞬態(tài)響應(yīng)
圖12:漏電感為10-μH時的瞬態(tài)響應(yīng)
圖13:漏電感為30-μH時的瞬態(tài)響應(yīng)
圖14:平均模型的鉗位電壓(在鉗位二極管的陰極上)與逐周期模型非常吻合(lleak= 1 μH)。
這些試驗證實,受漏電感影響的大信號模型與逐周期模型十分吻合,因此可考慮用于線性化應(yīng)用。
結(jié)論
在這第二部分,我們已看到漏電感如何影響反激式轉(zhuǎn)換器工作于CCM的瞬態(tài)響應(yīng)。采用PWM開關(guān)模型并考慮漏電感影響,我們能建立一個模擬逐周期模型的平均模型。這有助于證實我們的方案是正確的。它為第三部分作了鋪墊,在第三部分中我們將推導(dǎo)出轉(zhuǎn)換器的小信號響應(yīng)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機械表
石英石危害
時間繼電器
時鐘IC
世強電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器