RF至位解決方案可為材料分析應(yīng)用提供精密的相位和幅度數(shù)據(jù)
發(fā)布時間:2020-05-11 來源:Ryan Curran, Qui Luu, 和 Maithil Pachchigar 責(zé)任編輯:wenwei
【導(dǎo)讀】在分析遠(yuǎn)程站點(diǎn)的材料時,無法把探針放進(jìn)材料中,此時,高頻收發(fā)器為準(zhǔn)確量化材料的體積分?jǐn)?shù)提供了一種可行的方法,而且不存在直接接觸材料時的不利影響。正交調(diào)解器為測量這些應(yīng)用的幅度和相移提供了一種強(qiáng)大的新方法。這里談到的接收器信號鏈采用ADL5380寬帶正交解調(diào)器、 ADA4940-2超低功耗、低失真、全差分ADC 驅(qū)動器和AD7903雙通道、差分、16 位、1 MSPS PulSAR® ADC,不但可以提供準(zhǔn)確的數(shù)據(jù),同時還能確保操作的安全性和經(jīng)濟(jì)性。
在圖1 所示接收器中,一個連續(xù)波信號從發(fā)射(Tx)天線發(fā)出,通過待分析的材料,到達(dá)接收(Rx)天線。接收到的信號將相對于原始發(fā)射信號進(jìn)行衰減和相移處理。該幅度變化和相移可用來確定媒介內(nèi)容。
圖1. 接收機(jī)功能框圖
幅度和相移可以直接關(guān)聯(lián)元件的透射率和反射率屬性,如圖2 所示。舉例來說,在油氣水流中,對于介電常數(shù)、損耗和分散度而言,水高,油低,氣超低。
圖2. 不同均質(zhì)媒介的透射率和反射率
接收器子系統(tǒng)的實現(xiàn)
圖3 所示接收器子系統(tǒng)把RF 信號轉(zhuǎn)換成數(shù)字信號,以精確測量幅度和相位。信號鏈由一個正交解調(diào)器、一個雙通道差分放大器和一個雙通道差分SAR ADC 構(gòu)成。這種設(shè)計的主要目的是在高頻RF輸入動態(tài)范圍較大的條件下,獲得高精度的相位和幅度測量結(jié)果。
圖3. 面向材料分析的接收器簡化子系統(tǒng)
正交解調(diào)器
正交解調(diào)器提供一個同相(I)信號和一個正好反相90°的正交(Q)信號。I 和Q 信號為矢量,因此,可以用三角恒等式計算接收信號的幅度和相移,如圖4 所示。本振(LO)輸入為原始發(fā)射信號,RF 輸入為接收信號。解調(diào)器生成一個和差項。兩個信號的頻率完全相同,ωLO = ωRF,因此,結(jié)果會過濾掉高頻和項,差項則駐留于直流。接收信號的相位為?RF,不同于發(fā)射信號的相位?LO。該相移為?LO – ?RF,是媒介介 電常數(shù)導(dǎo)致的結(jié)果,有助于確定材料內(nèi)容。
圖4. 利用正交解調(diào)器測量幅度和相位
真實I/Q 解調(diào)器具有許多缺陷,包括正交相位誤差、增益不平衡、LO-RF 泄漏等,所有這些都會導(dǎo)致解調(diào)信號質(zhì)量下降。要選擇解調(diào)器,首先確定RF 輸入頻率范圍、幅度精度和相位精度要求。
ADL5380 采用5 V 單電源供電,可接受400 MHz 至6 GHz 范圍內(nèi)的RF 或IF 輸入頻率,是接收器信號鏈的理想選擇。根據(jù)配置,可提供5.36 dB 電壓轉(zhuǎn)換增益,其差分I 和Q 輸出可以把2.5 V p-p差分信號驅(qū)動至500 Ω 負(fù)載。在900 MHz 時,其噪聲系數(shù)為10.9 dB,IP1dB 為11.6 dBm,三階交調(diào)截點(diǎn)(IIP3)為29.7 dBm,動態(tài)范圍出色;而0.07 dB 的幅度平衡和0.2°的相位平衡則可實現(xiàn)杰出的解調(diào)精度。采用高級SiGe 雙極性工藝制造,提供微型4 mm × 4 mm、24 引腳LFCSP 封裝。
ADC 驅(qū)動器和高分辨率精密ADC
ADA4940-2 全差分雙通道放大器具有卓越的動態(tài)性能和可調(diào)輸出共模,是驅(qū)動高分辨率雙通道SAR ADC 的理想之選。該器件采用5 V 單電源供電,在2.5 V 共模下可提供±5 V 差分輸出。根據(jù)配置可提供2 倍增益(6 dB),并把ADC 輸入驅(qū)動至滿量程。RC濾波器(22 Ω/2.7 nF)有助于限制噪聲,減少來自ADC 輸入端容性DAC 的反沖。采用專有SiGe 互補(bǔ)雙極性工藝制造,提供微型4 mm× 4 mm、24 引腳LFCSP 封裝。
AD7903 雙通道16 位1 MSPS 逐次逼近型ADC 具有出色的精度,滿量程增益誤差為±0.006%,失調(diào)誤差為±0.015 mV。該器件采用2.5 V 單電源供電,1 MSPS 時功耗僅12 mW。使用高分辨率ADC的主要目標(biāo)是實現(xiàn)±1°的相位精度,尤其是當(dāng)輸入信號的直流幅度較小時。ADC 所要求的5 V 基準(zhǔn)電壓源由ADR435低噪聲基準(zhǔn)電壓源產(chǎn)生。
如圖5 所示,接收器子系統(tǒng)利用ADL5380-EVALZ, EB-D24CP44-2Z, EVAL-AD7903SDZ, 和 EVAL-SDP-CB1Z評估套件實現(xiàn)。這些電路組件針對子系統(tǒng)中的互連優(yōu)化。兩個高頻鎖相輸入源提供RF 和LO 輸入信號。
圖5. 接收器子系統(tǒng)評估平臺
表1 總結(jié)了接收器子系統(tǒng)中各個組件的輸入和輸出電壓電平。在 解調(diào)器的RF 輸入端,11.6 dBm 的信號產(chǎn)生的輸入在ADC 滿量程 范圍的–1 dB 之內(nèi)。表中假定,ADL5380 的負(fù)載為500 Ω,轉(zhuǎn)換增 益為5.3573 dB,功率增益為–4.643 dB,ADA4940-2 的增益為6 dB。 該接收器子系統(tǒng)的校準(zhǔn)程序和性能結(jié)果將在后續(xù)章節(jié)討論。
表1. 接收器子系統(tǒng)各組件的輸入和輸出電壓電平
接收器子系統(tǒng)誤差校準(zhǔn)
接收器子系統(tǒng)有三個主要誤差源:失調(diào)、增益和相位。
I 和Q 通道的各個差分直流幅度與RF 和LO 信號的相對相位存在 正弦關(guān)系。因此,I 和Q 通道的理想直流幅度可以通過以下方式計算得到:
隨著相位移過極化坐標(biāo),理想狀況下,有些位置會產(chǎn)生相同的電 壓。例如,I(余弦)通道上的電壓應(yīng)與+90°或–90°相移相同。然而,對于本應(yīng)產(chǎn)生相同直流幅度的輸入相位,恒定相移誤差(不受RF 和LO 的相對相位影響)會導(dǎo)致子系統(tǒng)通道產(chǎn)生不同結(jié)果。這種情況如圖6 和圖7 所示,其中,當(dāng)輸入應(yīng)為0 V 時,結(jié)果產(chǎn)生了兩個不同的輸出碼。這種情況下,–37°的相移遠(yuǎn)遠(yuǎn)大于含有鎖相環(huán)的真實系統(tǒng)的預(yù)期值。結(jié)果,+90°實際上表現(xiàn)為+53°,–90°表現(xiàn)為–127°。
通過10 個步驟從–180°到+180°收集結(jié)果,其中,未校正數(shù)據(jù)產(chǎn)生圖6 和圖7 所示橢圓形。通過確定系統(tǒng)中的額外相移量,可以解決該誤差問題。表2 顯示,系統(tǒng)相移誤差在整個傳遞函數(shù)范圍內(nèi)都是恒定不變的。
表2. 接收器子系統(tǒng)在0-dBm RF 輸入幅度條件下的實測相移小結(jié)
系統(tǒng)相位誤差校準(zhǔn)
對于圖5 所示系統(tǒng),當(dāng)步長為10°時,平均實測相移誤差為–37.32°。 在已知該額外相移時,可以算出經(jīng)調(diào)整的子系統(tǒng)直流電壓。變量 ?PHASE_SHIFT 定義為觀測到的額外系統(tǒng)相移的平均值。相位補(bǔ)償信 號鏈中產(chǎn)生的直流電壓可以計算如下:
對于給定的相位設(shè)置,等式5 和等式6 提供了目標(biāo)輸入電壓?,F(xiàn)在,子系統(tǒng)已線性化,可以校正失調(diào)誤差和增益誤差了。圖6 和圖7 中同時顯示了線性化的I 和Q 通道結(jié)果。對數(shù)據(jù)集進(jìn)行線性回歸計算,結(jié)果將產(chǎn)生圖中所示最優(yōu)擬合線。該擬合線為各個轉(zhuǎn)換信號鏈的實測子系統(tǒng)傳遞函數(shù)。
圖6. 線性化的I 通道結(jié)果 (5)
圖7. 線性化的Q 通道結(jié)果(6)
系統(tǒng)O_set 誤差和增益誤差校準(zhǔn)
接收器子系統(tǒng)中各信號鏈的理想失調(diào)應(yīng)為0 LSB,但是,對于I通道和Q 通道,實測失調(diào)分別為–12.546 LSB 和_22.599 LSB。最優(yōu)擬合線的斜率代表子系統(tǒng)的斜率。理想子系統(tǒng)斜率可計算如下:
(7)
圖6 和圖7 中的結(jié)果表明,I 通道和Q 通道的實測斜率分別為6315.5 和6273.1。為了校正系統(tǒng)增益誤差,必須調(diào)整這些斜率。校正增益誤差和失調(diào)誤差可以確保,利用等式1 計算得到的信號幅度與理想信號幅度相匹配。失調(diào)校正與實測失調(diào)誤差正好相反:
(8)
增益誤差校正系數(shù)為:
(9)
接收轉(zhuǎn)換結(jié)果可通過以下方式校正:
(10)
子系統(tǒng)的校準(zhǔn)直流輸入電壓按以下方式計算:
(11)
要計算各子系統(tǒng)信號鏈的感知模擬輸入電壓,則須在I 通道和Q通道上使用等式11。利用這些完全調(diào)整過的I 通道和Q 通道電壓來計算以各直流信號幅度定義的RF 信號幅度。要評估整個校準(zhǔn)程序的精度,可以把收集到的結(jié)果轉(zhuǎn)換成理想子系統(tǒng)電壓,后者產(chǎn)生于調(diào)解器輸出端,假設(shè)條件是不存在相移誤差。這可以通過以下方式實現(xiàn):用前面計算得到的平均直流幅度乘以每次試驗的實測相位正弦分?jǐn)?shù)(除掉其中計算得到的相移誤差)。計算過程如下:
?相移為前面計算得到的相位誤差,平均校準(zhǔn)后幅度為來自等式1 的 直流幅度結(jié)果,已經(jīng)過失調(diào)誤差和增益誤差補(bǔ)償。表3 所示為在0 dBm RF 輸入幅度條件下,各目標(biāo)相位輸入的校準(zhǔn)程序的結(jié)果。等式12 和等式13 計算得到的校正因子將集成到旨在以此處所示方式檢測相位和幅度的任何系統(tǒng)之中。
接收器子系統(tǒng)評估結(jié)果
表3. 0 dBm RF 輸入幅度條件下某些目標(biāo)相位輸入端實現(xiàn)的結(jié)果。
圖8 為實測絕對相位誤差直方圖,其中,對于從–180° 到 +180°的 每10°步長,其精度均高于1°。
圖8. 0 dBm輸入電平(相位步長為10°)條件下的實測絕對相位誤差直方圖
為了在任何給定輸入電平條件下精確測量相位,RF 相對于LO 的感知相移誤差(?PHASE_SHIFT)應(yīng)恒定不變。如果實測相移誤差開始以目標(biāo)相位步長(?TARGET)或幅度函數(shù)的形式發(fā)生變化,則這里所提校準(zhǔn)程序的精度將開始下降。室溫下的評估結(jié)果顯示,900 MHz條件下,對于最大值為11.6 dBm、最小值約為–20 dBm 的RF 幅度而言,相移誤差保持相對恒定。
圖9 所示為接收器子系統(tǒng)的動態(tài)范圍以及相應(yīng)幅度導(dǎo)致的額外相位誤差。當(dāng)輸入幅度降至–20 dBm 以下時,相位誤差校準(zhǔn)精度將開始下滑。系統(tǒng)用戶需要確定可接受的信號鏈誤差水平,以確定可接受的最小信號幅度。
圖9. 接收器子系統(tǒng)的動態(tài)范圍以及相應(yīng)的額外相位誤差
圖9 所示結(jié)果用5 V ADC 基準(zhǔn)電壓源收集。該ADC 基準(zhǔn)電壓源的幅度可以降低,從而為系統(tǒng)提供更小的量化水平。這樣,在小信號條件下,相位誤差精度會略有提升,但會增加系統(tǒng)飽和幾率。為了提高系統(tǒng)動態(tài)范圍,另一種不錯的選擇是采用一種過采樣方案,該方案可以提高ADC 的無噪聲位分辨率。求均值的采樣每增加一倍,結(jié)果可使系統(tǒng)分辨率增加½ LSB。給定分辨率增量的過采樣比計算方法如下:
(14)
當(dāng)噪聲幅度不再能隨機(jī)改變各采樣的ADC 輸出代碼時,過采樣會達(dá)到一個效益遞減點(diǎn)。在該點(diǎn)時,系統(tǒng)的有效分辨率將不能再次提升。過采樣導(dǎo)致的帶寬下降并非大問題,因為系統(tǒng)是以緩慢變化的幅度測量信號的。
AD7903 評估軟件提供一個校準(zhǔn)程序,允許用戶針對三個誤差源,對ADC 輸出結(jié)果進(jìn)行校正:相位、增益和失調(diào)。用戶需要收集系統(tǒng)未經(jīng)校正的結(jié)果,確定本文計算的校準(zhǔn)系數(shù)。圖10 所示為圖形用戶界面,其中,校準(zhǔn)系數(shù)已高亮顯示。 系數(shù)一旦確定,則可利用這個面板來計算解調(diào)器的相位和幅度。極化坐標(biāo)為觀測到的RF 輸入信號提供了一種直觀的呈現(xiàn)方式。幅度和相位計算通過等式1 和等式2 計算。用"采樣數(shù)(Num Samples)"下拉框,通過調(diào)整每次捕獲的采樣數(shù),可實現(xiàn)對過采樣比的控制。
Figure 10. Receiver subsystem calibration GUI.
結(jié)論
本文探討了遠(yuǎn)程檢測應(yīng)用面臨的主要挑戰(zhàn),并提出了一種利用ADL5380、ADA4940-2 和AD7903 接收器子系統(tǒng)的新型解決方案,該方案可以精確、可靠地測量材料內(nèi)容。提出的信號鏈具有寬動態(tài)范圍的特點(diǎn),在900 MHz 條件下,可實現(xiàn)0°至360°的測量范圍,精度優(yōu)于1°。
參考電路
Mallach, Malte 和 Thomas Musch, "超寬帶 微波掃描技術(shù):多相流測量新概念" GeMiC 2014,德國亞琛,2014 年3 月10-12 日。 Ryan Curran
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時間繼電器
時鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器