你的位置:首頁 > 電源管理 > 正文

開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)

發(fā)布時間:2020-05-11 來源:Christophe Basso 責任編輯:wenwei

【導(dǎo)讀】對于二階系數(shù),我們將設(shè)置電容C2處于其高頻狀態(tài)(以短路代替它),同時我們將確定驅(qū)動電感L1的阻抗。圖17說明了這種方法。因為輸出因C2短路,節(jié)點a和c都處于相同的0V電勢。電路簡化為右側(cè)示意圖。
 
06 二階系數(shù)
 
對于二階系數(shù),我們將設(shè)置電容C2處于其高頻狀態(tài)(以短路代替它),同時我們將確定驅(qū)動電感L1的阻抗。
 
圖17說明了這種方法。因為輸出因C2短路,節(jié)點a和c都處于相同的0V電勢。電路簡化為右側(cè)示意圖。
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)
圖17:二階系數(shù)設(shè)置儲能元件之一處于其高頻狀態(tài)(C2),同時您可確定電感兩端的電阻。
 
我們可寫出描述VT電壓的第一個方程。觀察到a) IT和IC是相同的,b) VT = –V(c),我們有
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(34)
 
因式分解VT/IT,L1兩端的阻抗為
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(35)
 
二階時間常數(shù)定義為
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(36)
 
如果我們認為Vout = MVin,b2系數(shù)表示為
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(37)
 
合并我們確定的時間常數(shù),得出分母D(s)
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(38)
 
如果我們考慮一個低Q值的近似值,這二階分母可以近似由兩級聯(lián)極點定義為
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(39)
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(40)
 
和合并為
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(41)
 
07 零點的確定
 
如上文所述,當激勵源調(diào)至零角頻率sz,,變形電路的響應(yīng)為無信號輸出(見圖1)。該運用現(xiàn)將包括將激勵源復(fù)原和確定無信號輸出的變形電路的條件。圖18所示為我們需要研究的更新電路。無信號輸出的有趣之處在于其傳播至其它節(jié)點。
 
例如,如果Vout = 0V,然后由于變壓器高邊連接,節(jié)點a也處于0 V,所有涉及該節(jié)點的表達式可以簡化為如圖所示。如果輸出無信號,則電流I1也為零,這意味著Ic=I3。
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)
圖18:在s=sz的特定條件下,觀察變形的電路,無信號響應(yīng)。
 
節(jié)點c的電壓定義為
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(42)
 
因此,電流Ic等于節(jié)點c的電壓除以L1的阻抗。
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(43)
 
而電流等于
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(44)
 
現(xiàn)將(43)代入(44),然后視Ic=I3:
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(45)
 
求解s,將系數(shù)k的值換為它們在圖13中的值,重新整理,您會發(fā)現(xiàn)
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(46)
 
這是個正的根源,因此為右半平面零點。通過收集所有的部分,發(fā)現(xiàn)極點和零點實際上是一個DCM buck-boost轉(zhuǎn)換器的極點和零點而得出完整的傳遞函數(shù):
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(47)
 
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(48)
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(49)
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(50)
 
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)(51)
 
最后的檢查,我們可比較Mathcad®和圖11大信號模型的SPICE仿真的動態(tài)響應(yīng)。如圖19所示,曲線完美重合。
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)
圖19:Mathcad®和SPICE提供完全相同的響應(yīng)(曲線完美疊加)。
 
另一個驗證是由采用不同的平均模型(架構(gòu)如[11])仿真相同的SEPIC結(jié)構(gòu)構(gòu)建。這也是一個自動切換的CCM-DCM模型,但走線方式稍有不同。圖20所示為兩種平均模型采用一個類似的SEPIC架構(gòu)。
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)
圖20:CoPEC平均模型包括單獨的開關(guān)和二極管連接。
 
圖21證實了兩個交流響應(yīng)在相位和幅值上完全相同。
 
開關(guān)轉(zhuǎn)換器動態(tài)分析采用快速分析技術(shù)(3)
圖21:DCM PWM開關(guān)和CoPEC DCM模型提供相同的動態(tài)響應(yīng)。
 
08 總結(jié)
 
快速分析技術(shù)為推導(dǎo)線性電路傳遞函數(shù)提供了一種快速而高效的方法。在無源電路中,觀察是可能的,而且是經(jīng)常的,無需寫一行代數(shù)就能得到傳遞函數(shù)。隨著電路變得復(fù)雜和包括激勵源,您不得不采用經(jīng)典的KCL和KVL分析。但當您確定分子和分母中個別的多項式因子時,很容易跟蹤錯誤和只關(guān)注錯誤項,如果有的話。在復(fù)雜的電路中,小草圖和SPICE的幫助是極有用的。
 
最后,最終結(jié)果以一種有意義的格式表示,并可直接識別出極點和零點位于何處。這是非常重要的,因為您必須知道問題隱藏在傳遞函數(shù)的何處。作為一個設(shè)計人員,您必須平衡它們,這樣自然的產(chǎn)生傳播或組件的變化不會危及您的系統(tǒng)在運行中的穩(wěn)定性。
 
參考文獻
 
1. R. D. Middlebrook, Methods of Design-Oriented Analysis: Low-Entropy Expressions, Frontiers in Education Conference, Twenty-First Annual conference,  Santa-Barbara, 1992.
2. R. D. Middlebrook, Null Double Injection and the Extra Element Theorem, IEEE Transactions on Education, Vol. 32, NO. 3, August 1989.
3. V. Vorpérian, Fast Analytical Techniques for Electrical and Electronic Circuits, Cambridge University Press, 2002.
4. C. Basso, Linear Circuit Transfer Functions – An Introduction to Fast Analytical Techniques, Wiley,  2016.
5. V. Vorpérian, Simplified Analysis of PWM Converters Using the Model of the PWM Switch, Parts I and II, Transactions on Aerospace and Electronics Systems, vol. 26, no. 3, May 1990.
6. D. Feucht, Design-Oriented Circuit Dynamics, http://www.edn.com/electronics-blogs/outside-the-box-/4404226/Design-oriented-circuit-dynamics
7. D. Peter, We Can do Better: A Proven, Intuitive, Efficient and Practical Design-Oriented Circuit Analysis Paradigm is Available, so why aren''t we using it to teach our Students?,
http://www.icee.usm.edu/ICEE/conferences/asee2007/papers/1362_WE_CAN_DO_BETTER__A_PROVEN__INTUITIVE__E.pdf
8. C. Basso, Fast Analytical Techniques at Work with Small-Signal Modeling, APEC Professional Seminar, Long Beach (CA), 2016, http://cbasso.pagesperso-orange.fr/Spice.htm
9. J. Betten, Benefits of a  coupled-inductor SEPIC, slyt411, application note, Texas-Instruments.
10. C. Basso, Switch-Mode Power Supplies: SPICE Simulation and Practical Designs, McGraw-Hill, 2nd edition, 2014.
11. D. Maksimovic, R. Erickson, Advances in Averaged Switch Modeling and Simulation, Power Electronic Specialist Conference Professional Seminar, Charleston, 1999
 
 
推薦閱讀:
 
ADI的fido5000如何幫助JUMO做好準備,迎接工業(yè)4.0
面向物聯(lián)網(wǎng)系統(tǒng)的ST連接芯片組或模塊可破解射頻設(shè)計難題
SGM41524緊湊型簡潔開關(guān)充電:0.3A~2.3A鋰電池充電器
揭開高性能多路復(fù)用數(shù)據(jù)采集系統(tǒng)的神秘面紗
MEMS振動監(jiān)控簡介
要采購開關(guān)么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉