物聯(lián)網(wǎng)智能傳感器的噪聲與功耗
發(fā)布時間:2017-05-26 來源:Mark Looney 責(zé)任編輯:wenwei
【導(dǎo)讀】對于那些為物聯(lián)網(wǎng)應(yīng)用領(lǐng)域開發(fā)智能傳感器的人士而言,性能與功耗的關(guān)系是最微妙的權(quán)衡考慮。在廣闊的性能空間中,噪聲常常是一個重要的評估因素,因為它能制約智能傳感器中關(guān)鍵功能模塊的器件選擇,進(jìn)而提高功耗負(fù)擔(dān)。此外,噪聲特性在很大程度上決定了濾波要求,而這又會影響傳感器對條件快速變化的響應(yīng)能力,延長產(chǎn)生高質(zhì)量測量結(jié)果所需的時間。
在支持連續(xù)觀測(采樣、處理、通信)的應(yīng)用中,系統(tǒng)架構(gòu)師常常不得不解決噪聲與功耗相互對立的關(guān)系,因為噪聲最低的解決方案很少正好也是功耗最低的解決方案(就特定功能類別的器件而言)。例如,MEMS加速度計常常用作遠(yuǎn)程傾斜測量系統(tǒng)的核心傳感器。表1顯示了兩款不同產(chǎn)品的重要特性,它們提供目前在業(yè)界領(lǐng)先的噪聲或功耗性能:ADXL355(低噪聲)和ADXL362(低功耗)。
表1. MEMS加速度計比較
表1包括四行,其中三行對應(yīng)ADXL362的可選工作模式,剩下的一行給出了ADXL355的主要指標(biāo)。從這一權(quán)衡空間的關(guān)鍵邊界開始,ADXL355的噪聲比最低功耗模式的ADXL362要低幾乎27倍,但前者的功耗要高得多。性能要求更具挑戰(zhàn)性的應(yīng)用可能需要考慮ADXL362的最高性能模式,此時ADXL355的噪聲要低9倍,但ADXL362的功耗要低13倍。
在不需要連續(xù)觀測的應(yīng)用中,平均功耗與噪聲的關(guān)系變得更有意義?;蛟S令人難以置信,但噪聲和功耗的關(guān)系甚至可能變成互補式。這對開發(fā)人員來說無疑是個好消息。因為在之前的設(shè)計中,開發(fā)人員可能因難以確定該讓功耗還是性能主導(dǎo)其設(shè)計而延誤了時機。而現(xiàn)在,無需等待其他人在這一權(quán)衡中做出決定,智能傳感器架構(gòu)師可自行對權(quán)衡范圍內(nèi)的相關(guān)選項進(jìn)行量化;這一做法將重新定義架構(gòu)師的工作。
智能傳感器架構(gòu)
為了量化特定應(yīng)用的相關(guān)選項,首先需要對信號鏈做一些假設(shè),因此可以從概念架構(gòu)開始。圖1是智能傳感器架構(gòu)的一般例子,其中包含了最常見的功能。
圖1. 智能傳感器架構(gòu)
核心傳感器
智能傳感器節(jié)點中的信號鏈從核心傳感器功能開始。最基本形式的核心傳感器也稱為變換器,其將物理條件或?qū)傩赞D(zhuǎn)換成代表性的電信號。傳感器的比例因子描述其電響應(yīng)與其監(jiān)控的物理屬性或條件的線性關(guān)系。例如,提供模擬輸出的溫度傳感器(如AD590)的比例因子單位為mV/°C;數(shù)字加速度計(如ADXL355)的比例因子用LSB/g或碼數(shù)/g來表示。
濾波器
信號鏈(圖1)的下一個功能模塊是濾波器。這一級的作用是降低核心傳感器可能支持,但與應(yīng)用無關(guān)的頻段中的噪聲。在振動監(jiān)控應(yīng)用中,這可能是一個帶通濾波器,它將隨機振動與可能指示機器壽命減損的特定頻譜特征分離開來。在傾斜傳感器中,這可能是一個簡單的低通濾波器,例如移動平均濾波器。這種情況下,時長是建立時間與濾波器輸出殘余噪聲之間的一個重要權(quán)衡因素。圖2顯示了ADXL355艾倫方差曲線的例子,它表示相對于產(chǎn)生測量的均值時間,測量的不確定性(噪聲)。
圖2. 艾倫方差曲線:ADXL355和ADXL362
校準(zhǔn)
校準(zhǔn)功能的作用是通過應(yīng)用校正公式來提高測量精度。在要求極高的應(yīng)用中,通常是在嚴(yán)格受控條件下進(jìn)行測量,通過直接觀測傳感器響應(yīng)來獲得此類校正公式。例如在傾斜傳感器應(yīng)用中,校準(zhǔn)過程涉及到觀測MEMS加速度計在多個不同方向上相對于重力的輸出。這種觀測的一般目標(biāo)是觀測傳感器對足夠多取向的響應(yīng),從而求解如下關(guān)系式(參見方程1)中所有12個校正系數(shù)(m11、m12、m13、m21、m22、m23、m31、m32、m33、bx、by、bz):
方程1中的校正系數(shù)用于處理偏置、靈敏度和對準(zhǔn)誤差。此公式還可以擴(kuò)展以包括更高階傳感器特性(非線性)或環(huán)境相關(guān)性(溫度、電源電平)。
數(shù)據(jù)處理
數(shù)據(jù)處理功能用于將校準(zhǔn)且濾波的傳感器數(shù)據(jù)轉(zhuǎn)換成適當(dāng)?shù)臏y量結(jié)果以對應(yīng)用提供最佳支持。在振動監(jiān)控系統(tǒng)中,這可能是簡單的RMS-DC轉(zhuǎn)換或帶頻譜報警的快速傅里葉變換(FFT)(參見ADIS16228)。在傾斜檢測應(yīng)用中,智能傳感器會利用方程2、方程3或方程4將傳感器對重力的加速度響應(yīng)轉(zhuǎn)換成方位角估計值。
這三個關(guān)系式分別代表使用一個、兩個和三個加速度計測量結(jié)果的傾斜估計,假設(shè)各加速度計完全正交。
通信/存儲
通信/存儲功能支持所有物聯(lián)網(wǎng)云服務(wù)的數(shù)據(jù)分級和連接(加密/安全、存儲和分析)。
周期供電操作
電源管理(PM)功能對典型智能傳感器有三個作用。第一個作用是管理信號鏈中所有器件的上電時序要求。第二個作用是將電源供應(yīng)轉(zhuǎn)換成適當(dāng)?shù)碾妷簛碇С中盘栨溨兴衅骷淖顑?yōu)運行。最后一個作用是在以一定時間間隔進(jìn)行測量的系統(tǒng)中,提供排程信號來觸發(fā)每次測量事件。
周期供電是識別智能傳感器節(jié)點中此類斷續(xù)操作的常見方法。在兩次測量事件之間,智能傳感器處于低功耗(或零功耗)狀態(tài),這種技術(shù)有助于節(jié)能。圖3顯示了一個采用此技術(shù)的智能傳感器在一個完整測量周期上的瞬時功耗。
圖3. 基本周期供電圖
方程5提供了一個利用圖3所示運行特性來估算平均功耗(PAV)的簡單關(guān)系式。
PON是智能傳感器節(jié)點執(zhí)行采樣并處理數(shù)據(jù)以產(chǎn)生和傳輸相關(guān)測量結(jié)果的平均功耗。
POFF是智能傳感器節(jié)點支持低功耗睡眠模式所需的平均功耗。
tON是智能傳感器開啟、產(chǎn)生測量結(jié)果、將該結(jié)果傳輸?shù)轿锫?lián)網(wǎng)云、然后關(guān)閉所需的時間。
tOFF是智能傳感器處于靜止?fàn)顟B(tài)(睡眠模式或完全關(guān)斷)的時間。
T為平均測量周期時間。
測量過程
在其開啟時間(tON)內(nèi),智能傳感器通常會經(jīng)歷多個不同運行狀態(tài)。圖4和方程6顯示了一個示例序列,其將開啟時間分為四段:初始化、建立、處理和通信。
圖4. 智能傳感器測量周期序列
tI是初始化時間,代表從施加電源(VSP)到信號鏈中的各器件準(zhǔn)備好支持?jǐn)?shù)據(jù)采樣和處理的時間。
tS是建立時間,代表從第一個數(shù)據(jù)樣本到濾波器輸出(VSM)建立于足夠高的精度水平的時間。
tP是處理時間,代表從濾波器建立到產(chǎn)生測量結(jié)果所需的時間。這可能包括應(yīng)用校準(zhǔn)公式、專門的信號處理以及根據(jù)物聯(lián)網(wǎng)安全協(xié)議進(jìn)行數(shù)據(jù)加密的時間。
tC是通信時間,代表連接云服務(wù)、發(fā)送加密數(shù)據(jù)以及支持差錯校驗或身份驗證服務(wù)所需的時間。
建立時間影響
根據(jù)測量周期的階段劃分(圖4),很明顯,在濾波器建立時間這一段中,噪聲可能會影響周期供電的智能傳感器節(jié)點的功耗。一般而言,來自均值操作的噪聲幅度的降低量與均值時間的平方根成比例,而能耗的增加量與均值時間是直接比例關(guān)系。因此,噪聲幅度降低10倍會引起能耗(濾波建立期間)增加100倍!這種不成比例的權(quán)衡關(guān)系很快會對只需最少濾波(最低噪聲)的傳感器有利。
應(yīng)用示例
考慮圖5所示的微波天線平臺,其??吭谝粋€塔式平臺上。在此類通信系統(tǒng)中,數(shù)據(jù)鏈路的可靠性取決于指向角的精度。為了維持指向角,可能需要手動調(diào)整,特別是地震或其他原因擾動了天線所??康钠脚_之后。此類遠(yuǎn)程維護(hù)的成本高昂,而且不能及時響應(yīng),因此,作為維護(hù)響應(yīng)策略的一部分,一家天線運營商正研究利用MEMS加速度計監(jiān)控天線方向變化的可行性。
圖5. 微波天線平臺
系統(tǒng)架構(gòu)師根據(jù)最基本的功能要求開始了此次調(diào)研:維持各天線平臺的可靠通信。該系統(tǒng)中,可靠的數(shù)據(jù)通信要求天線指向角始終位于天線的半功率波束寬度(HPBW,參見圖5)以內(nèi)。因此,他們決定:如果天線在短時間內(nèi)的方向變化達(dá)到天線HPBW的25%,那么就觸發(fā)一次實地維護(hù)需求。
在支持此目標(biāo)的誤差預(yù)算內(nèi),架構(gòu)師允許傾斜測量的峰值噪聲為測量目標(biāo)(HPBW的25%)的10%。為簡明起見,架構(gòu)師還指定噪聲峰值等于噪聲均方根(rms)值的3倍。方程7反映了所有這些限定條件,并將其簡化為一個關(guān)系式,即傾斜測量中的噪聲必須小于HPBW/120。
方程8是該角度噪聲要求與MEMS加速度計的相同性能指標(biāo)的關(guān)系式,它是通過如下方式得來:將方程7的結(jié)果代入方程2中的加速度和傾斜角基本公式。
因此,若天線的HPBW為0.7°,則加速度計的噪聲必須小于100 μg才能達(dá)到現(xiàn)有標(biāo)準(zhǔn)。
為使測量實現(xiàn)100 μg的不確定度,可以利用這一結(jié)果作為指標(biāo)來確定各候選傳感器(表1)所需的均值時間量。回顧圖2可知,ADXL355將需要約0.01秒(tS355 = 0.01,參見方程10)的均值時間才能達(dá)到要求。
對于ADXL362,可以做簡單的近似計算:因為其噪聲是ADXL355的9倍,所以為了達(dá)到相同的目標(biāo),需要的均值時間將是ADXL355的81倍(tS362 = 81 x tS355,參見方程11)。方程10反映了來源于ADXL355建立時間的能耗,方程11反映了來源于ADXL362建立時間的能耗(參見表1)。
出乎意料的是,對于該噪聲性能水平,最低能耗來自最低噪聲的加速度計,而不是來自最低功耗的加速度計。方程12將方程10和方程11中各傳感器的能耗估計值除以測量間隔(T = 10秒),得到建立時間對功耗的估計貢獻(xiàn)。
結(jié)論
本文揭示了一種特殊情況,即最低功耗解決方案是由噪聲最低的核心傳感器實現(xiàn)的,而不是由功耗最低的傳感器實現(xiàn)的。新興物聯(lián)網(wǎng)應(yīng)用對性能要求嚴(yán)苛,而可用能源則很有限;對于那些為此類應(yīng)用開發(fā)智能傳感器方案的人士來說,這種解決途徑可能是一個重要的啟示。事實上,愿意了解并挑戰(zhàn)哪怕是最根本的范式的人士,可能會獲得更巧妙的解決方案。有時候,同一傳感器既能提供最高性能,又具有最低功耗。
作者簡介
Mark Looney [mark.looney@analog.com]ADI公司(美國北卡羅來納州格林斯博羅)的iSensor®應(yīng)用工程師。自1998年加入ADI公司以來,他在傳感器信號處理、高速模數(shù)轉(zhuǎn)換器和DC-DC電源轉(zhuǎn)換領(lǐng)域積累了豐富的工作經(jīng)驗。他擁有內(nèi)華達(dá)州大學(xué)雷諾分校電氣工程專業(yè)學(xué)士(1994年)和碩士(1995年)學(xué)位,并發(fā)表過數(shù)篇文章。加入ADI公司之前,他曾協(xié)助創(chuàng)立汽車電子和交通解決方案公司IMATS,還擔(dān)任過Interpoint公司的設(shè)計工程師。
本文轉(zhuǎn)載自ADI電機控制中文技術(shù)社區(qū)。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖