【導讀】在移動通信發(fā)展的30年間,毫米波一直都是一片未經(jīng)開墾的蠻荒之地,諸如高通、愛立信、華為、中興等通信巨頭的實驗室都對它持續(xù)地研究,現(xiàn)如今毫米波在生活中的應用已越來越多,例如毫米波雷達技術(shù)、5G技術(shù)中均有毫米波的身影。本文中,將為大家介紹毫米波頻譜的劃分以及毫米波終端技術(shù)測試方案的分析,以幫助大家對毫米波具備進一步認識。
1、毫米波產(chǎn)生的背景
在頻譜資源越來越緊缺的情況下,開發(fā)利用使用在衛(wèi)星和雷達軍用系統(tǒng)上的毫米波頻譜資源成為了第五代移動通信技術(shù)的重點,因毫米波段擁有巨大的頻譜資源開發(fā)空間所以成為 Massive MIMO 通信系統(tǒng)的首要選擇。毫米波的波長較短,在 Massive MIMO 系統(tǒng)中可以在系統(tǒng)基站端實現(xiàn)大規(guī)模天線陣列的設(shè)計,從而使毫米波應用結(jié)合在波束成形技術(shù)上,這樣可以有效的提升天線增益,但也是由于毫米波的波長較短,所以在毫米波通信中,傳輸信號以毫米波為載體時容易受到外界噪聲等因素的干擾和不同程度的衰減。
2、毫米波簡介
毫米波 (millimeter wave ):波長為1~10毫米的電磁波稱毫米波,對應頻率為30~300GHz,它位于微波與遠紅外波相交疊的波長范圍,因而兼有兩種波譜的特點。
毫米波的優(yōu)勢:
1)極寬的帶寬。通常認為毫米波頻率范圍為26.5~300GHz,帶寬高達273.5GHz。超過從直流到微波全部帶寬的10倍。即使考慮大氣吸收,在大氣中傳播時只能使用四個主要窗口,但這四個窗口的總帶寬也可達135GHz,為微波以下各波段帶寬之和的5倍。配合各種多址復用技術(shù)的使用可以極大提升信道容量,適用于高速多媒體傳輸業(yè)務, 這在頻率資源緊張的今天無疑極具吸引力。
2)波束窄。在相同天線尺寸下毫米波的波束要比微波的波束窄得多。例如一個 12cm的天線,在9.4GHz時波束寬度為18度,而94GHz時波束寬度僅1.8度。因此可以分辨相距更近的小目標或者更為清晰地觀察目標的細節(jié)。
3)可靠性高,較高的頻率使其受干擾很少,能較好抵抗雨水天氣的影響,提供穩(wěn)定的傳輸信道;與激光相比,毫米波的傳播受氣候的影響要小得多,可以認為具有全天候特性。
4)方向性好,毫米波受空氣中各種懸浮顆粒物的吸收較大,使得傳輸波束較窄,增大了竊聽難度,適合短距離點對點通信;
5)波長極短,所需的天線尺寸很小,易于在較小的空間內(nèi)集成大規(guī)模天線陣。和微波相比,毫米波元器件的尺寸要小得多。因此毫米波系統(tǒng)更容易小型化。
毫米波的缺點:
除了優(yōu)點之外,毫米波也有一個主要缺點,那就是不容易穿過建筑物或者障礙物,并且可以被葉子和雨水吸收。這也是為什么5G網(wǎng)絡(luò)將會采用小基站的方式來加強傳統(tǒng)的蜂窩塔。毫米波通信系統(tǒng)中,信號的空間選擇性和分散性被毫米波高自由空間損耗和弱反射能力所限制,又由于配置了大規(guī)模天線陣,很難保證各天線之間的獨立性,因此,在毫米波系統(tǒng)中天線的數(shù)量要遠遠高于傳播路徑的數(shù)量。
同時以技術(shù)來看,毫米波曾經(jīng)的技術(shù)“缺陷”現(xiàn)如今也能成為優(yōu)勢。
要知道頻段越高,對于接收天線的尺寸要求就會越低。這意味對于支持毫米波的終端而言,機身內(nèi)部的接收天線可以做得比以往更小,而對于沒有尺寸限制的終端,也可以在原先的技術(shù)上容納更多的高頻段天線,從而獲得更好的接受效果。
更為重要的是,毫米波本身由于傳播距離比6GHz以下頻率更短,因此在整個傳播路徑下,它的定向性將會更具優(yōu)勢,這使得毫米波信號間受到干擾的可能性將會變得更小,傳播的精度有所提高。另外,窄波束本身由于傳播距離短,它被遠距離截獲的可能性將變得更低,在通訊安全方面,也有著無可比擬的優(yōu)勢。
當然嚴格來說,所謂的毫米波(mmWave)更確切的是指EHF頻段,它是頻率范圍橫跨30GHz至300GHz的電磁波,如果從波長來定義,30GHz的電磁波波長為10毫米,而300GHz的電磁波波長則僅為1毫米。但根據(jù)FR2頻段的播放來計算,24.25GHz的波長已經(jīng)超過10毫米,雖然我們將它稱作毫米波,但許多人認為它更應該劃入厘米波的范疇。
不過由于世界并沒有組織對毫米波下達過明確的定義,因此從廣義認同的界限來看,F(xiàn)R2頻段算作毫米波也無傷大雅。
3、毫米波頻譜劃分
2015年,ITU-R WP5D發(fā)布了IMT.ABOVE 6GHz的研究報告,詳細研究了不同頻段無線電波的衰減特性。在同年的世界無線電通信大會(WRC-15)上提出了多個5G候選的毫米波頻段,最終5G毫米波頻譜的確定將在WRC-19上的完成。
在全球范圍內(nèi),5G部署的頻段有且只有兩種,一種是sub-6GHz,指的是6GHz以下的頻段,一種是毫米波。
經(jīng)過多年的研究和討論,各國各地區(qū)對毫米波頻譜資源的劃分都有所進展,以下將著重介紹中國、美國及歐洲在毫米波頻段劃分上的近況。
中國:2017年6月,工信部面向社會廣泛征集24.75-27.5 GHz、37-42.5 GHz或其他毫米波頻段用于5G系統(tǒng)的意見,并將毫米波頻段納入5G試驗的范圍,意在推動5G毫米波的研究及毫米波產(chǎn)品的研發(fā)試驗。
美國:早在2014年,F(xiàn)CC(美國聯(lián)邦通訊委員會)就開啟了5G毫米波頻段的分配工作,2016年7月,確定將27.5-28.35 GHz、37-38.6 GHz、38.6-40 GHz作為授權(quán)頻譜分配給5G,另外還為5G分配了64-71 GHz作為未授權(quán)頻譜。
歐洲:2016年11月,RSPG(歐盟委員會無線頻譜政策組)發(fā)布了歐盟5G頻譜戰(zhàn)略,確定將24.25-27.5 GHz作為歐洲5G 的先行頻段,31.8-33.4 GHz 、40.5-43.5 GHz作為5G潛在頻段。
4、毫米波終端技術(shù)實現(xiàn)
毫米波頻段頻率高、帶寬大等特點將對未來5G終端的實現(xiàn)帶來諸多挑戰(zhàn),毫米波對終端的影響主要在于天線及射頻前端器件。
4.1 終端側(cè)大規(guī)模天線陣列
由于天線尺寸的限制,在低頻段大規(guī)模天線陣列只能在基站側(cè)使用。但隨著頻率的上升,在毫米波段,單個天線的尺寸可縮短至毫米級別,在終端側(cè)布置更多的天線成為可能。如下圖1所示,目前大多數(shù)LTE終端只部署了兩根天線,但未來5G毫米波終端的天線數(shù)可達到16根甚至更多,所有的天線將集成為一個毫米波天線模塊。由于毫米波的自由空間路損更大,氣衰、雨衰等特性都不如低頻段,毫米波的覆蓋將受到嚴重的影響。終端側(cè)使用大規(guī)模天線陣列可獲得更多的分集增益,提高毫米波終端的接收和發(fā)射性能,能夠在一定程度彌補毫米波覆蓋不足的缺點,終端側(cè)大規(guī)模天線陣列將會是毫米波得以商用的關(guān)鍵因素之一。
圖1:LTE終端與毫米波終端天線設(shè)想
終端部署更多的天線意味著終端設(shè)計難度的上升,與基站側(cè)部署大規(guī)模天線陣列不同,終端側(cè)的大規(guī)模天線陣列受終端尺寸、終端功耗的制約,其實現(xiàn)難度將大大增加,目前只能在固定終端上實現(xiàn)大規(guī)模天線陣列的布置。移動終端的大規(guī)模天線陣列設(shè)計面臨諸多挑戰(zhàn),包括天線陣列校準,天線單元間的相互耦合以及功耗控制等。
4.2 毫米波射頻前端器件
射頻前端器件包括了功率放大器、開關(guān)、濾波器、雙工器、低噪聲放大器等,其中功率放大器是最為核心的器件,其性能直接決定了終端的通信距離、信號質(zhì)量及待機時間。目前制造支持低頻段的射頻前端器件的材料多為砷化鎵、CMOS和硅鍺。但由于毫米波段與低頻段差異較大,低頻射頻前端器件的制造材料在物理特性上將很難滿足毫米波射頻前端器件的要求。
以功率放大器為例,目前主流的功率放大器制造材料為砷化鎵,但在毫米波頻段,氮化鎵及InP的制造工藝在性能指標上均要強于砷化鎵。下表所示為從低頻到毫米波段主要的射頻前端器件制造工藝上的發(fā)展方向。
另外,毫米波頻段大帶寬的特點對射頻前端器件的提出了更高的要求,未來毫米波終端的射頻前端器件將可能需支持1GHz以上的連續(xù)帶寬。
雖然氮化鎵被認為是未來毫米波終端射頻的主流制造工藝,但由于成本、產(chǎn)能等因素,基于氮化鎵工藝的高性能射頻前端器件多用于軍工和基站等特殊場景。毫米波射頻前端技術(shù)的發(fā)展將會成為毫米波終端實現(xiàn)的關(guān)鍵,預計到2020年之后,毫米波移動終端射頻器件的技術(shù)和成本才可能達到大規(guī)模商用的要求。
5、面向5G的毫米波網(wǎng)絡(luò)構(gòu)架
建成5G后,5G網(wǎng)絡(luò)強大的數(shù)據(jù)傳輸能力,極強的穩(wěn)定性以及大范圍的覆蓋率給大數(shù)據(jù)時代帶來了很多的好處,在部分建設(shè)好的地區(qū)可以時用戶體驗到10M/S 及以上的傳輸速率,通過網(wǎng)絡(luò)給社會發(fā)展與人們提供保障。有關(guān)事實表明,對于LTE 覆蓋范圍不大的這一個問題,通過5G 可以進行大范圍覆蓋,處理該問題。可是因為5G 建設(shè)初步階段需挑選合適的地址,建設(shè)對應的基礎(chǔ)設(shè)施,同時在后期保養(yǎng)成本高,因而,在當前還在進行理論試驗,沒有真正投入使用。因此,5G 英超向著小型與集成化的趨勢發(fā)展。基于此,可將基礎(chǔ)機構(gòu)建設(shè)為美觀的形式,給沒有環(huán)境提供助力。按照建設(shè)的實際情況進行設(shè)計,進行科學部署,這樣就可以節(jié)省經(jīng)濟。
在通信層面,數(shù)據(jù)與信令能夠起到不一樣的作用。數(shù)據(jù)經(jīng)過專門通道由一個終端傳輸?shù)搅硗獾囊粋€終端。信令需在網(wǎng)絡(luò)中經(jīng)過各種傳輸,同時在傳輸時可能需要通過處理才可起到最大作用。在通訊系統(tǒng)里面,信令與數(shù)據(jù)具備各自不一樣的傳輸渠道,建成系統(tǒng)后,LTE可以運輸不一樣的信令。在5G 系統(tǒng)內(nèi)的設(shè)計將數(shù)據(jù)與信令分離的傳輸形式,可以處理好在LTE 內(nèi)信令占據(jù)過多資源的情況,進而提升傳輸?shù)男省?/div>
6、總結(jié)
在現(xiàn)代化社會中,經(jīng)濟的持續(xù)發(fā)展帶動了5G 技術(shù)的持續(xù)發(fā)展,毫米波技術(shù)在未來發(fā)展過程中也一定會變成主要的工具。可是,現(xiàn)如今,因為毫米波傳播的范疇有限,無法進行遠距離的傳輸,伴隨科學技術(shù)的進步,該問題也可以有效解決,進而給5G 的到來奠定基礎(chǔ)。毫米波具備一定的穩(wěn)定性,能夠給5G 技術(shù)研究提供參照,整體而言,要使5G技術(shù)更加成熟,就需要通過毫米波技術(shù),與創(chuàng)新科學技術(shù),研制出新型的技術(shù)在5G 中使用,或許在不久的將來,毫米波將成為5G乃至6G的常用頻段。
我們相信,5G技術(shù)正像這個時代的蒸汽機,它將再一次推動全人類全產(chǎn)業(yè)的進步,無論是工業(yè)領(lǐng)域還是普通人的生活,都將因此而改變。在頻譜資源進一步被壓榨的當下,毫米波技術(shù)最終也將登上歷史舞臺,承擔起提供更優(yōu)質(zhì)網(wǎng)絡(luò)的重任。
推薦閱讀: