確保EMC高性能:利用無扼流圈收發(fā)器簡(jiǎn)化CAN總線
發(fā)布時(shí)間:2016-05-09 責(zé)任編輯:susan
【導(dǎo)讀】汽車內(nèi)電子元器件的密度逐年增加,我們需要確保車內(nèi)網(wǎng)絡(luò)在電磁兼容性(EMC)方面能保持高性能。這樣的話,當(dāng)不同子系統(tǒng)被集成在一個(gè)較大解決方案中,并且在常見(嘈雜)環(huán)境中運(yùn)行時(shí),這些子系統(tǒng)能夠正常運(yùn)轉(zhuǎn)。
雖然有很多不同的車內(nèi)網(wǎng)絡(luò)互連標(biāo)準(zhǔn),并且汽車原始設(shè)備制造商 (OEM) 對(duì)于EMC也有多種不同的要求,這篇文章主要討論一個(gè)已經(jīng)被證明具有特別挑戰(zhàn)性的話題:一個(gè)控制器局域網(wǎng) (CAN) 總線的射頻 (RF) 放射。
CAN使用均衡的差分信令來發(fā)送波特率,高達(dá)1Mbps(或者更高,前提是使用“靈活數(shù)據(jù)速率”變量)的二進(jìn)制數(shù)據(jù)。理想情況下,差分信令的使用避免了所有外部噪聲耦合。由于每一半差分對(duì)(被稱為CANH和CANL)在變化時(shí)是對(duì)稱的,它們的噪聲帶來的干擾是具有破壞性的。然而,沒有CAN收發(fā)器是完全理想的,并且CANH和CANL信號(hào)之間的低值不對(duì)稱會(huì)產(chǎn)生未經(jīng)完全均衡的差分信號(hào)。當(dāng)這一情況發(fā)生時(shí),CAN信號(hào)的共模分量(CANH和 CANL的平均值)將不再是一個(gè)恒定的DC值。相反地,它將表現(xiàn)出與數(shù)據(jù)有關(guān)的噪聲。
兩個(gè)主要的不均衡類型會(huì)導(dǎo)致這個(gè)噪聲。其中一個(gè)就是顯性(被驅(qū)動(dòng))和隱性(高阻抗)狀態(tài)期間穩(wěn)定狀態(tài)共模電壓電平之間的不匹配。
這個(gè)穩(wěn)定狀態(tài)不匹配會(huì)導(dǎo)致一個(gè)類似于CAN數(shù)據(jù)本身縮放版本的噪聲圖形。這個(gè)噪聲圖形在它的頻譜內(nèi)很寬,表現(xiàn)為一系列延伸至極低頻率且間隔均勻的離散頻譜線。定時(shí)不匹配會(huì)導(dǎo)致一個(gè)由短脈沖或干擾組成的噪聲圖形,只要數(shù)據(jù)中有邊緣變換,它就會(huì)出現(xiàn)。這個(gè)噪聲圖形的頻譜含量往往集中比較高的頻率上。
圖1中的波形顯示了一個(gè)可以在典型CAN收發(fā)器的輸出上觀察到的共模噪聲。在這幅圖像中,黑色軌跡線(通道1)顯示CANH,紫色軌跡線(通道 2)顯示的是CANL,并且綠色軌跡線(數(shù)據(jù)功能)是CANH與CANL的和。這個(gè)求和的過程給出了一個(gè)波形,它的值等于此時(shí)一個(gè)指定點(diǎn)上共模電壓的2 倍。
圖1:典型CAN收發(fā)器CANH/CANL輸出和共模噪聲
共模波形顯示出兩種噪聲類型:與顯性至隱性/隱性至顯性變換相對(duì)應(yīng)的高頻噪聲,而低頻噪聲是與不匹配的顯性和隱性共模相對(duì)應(yīng)的。
由于信號(hào)的共模部分能夠與系統(tǒng)(或與外部系統(tǒng))中的其它分量耦合在一起(通過輻射或傳導(dǎo)路徑),這個(gè)共模噪聲直接影響放射性能。這個(gè)器件的傳導(dǎo)放射按照工業(yè)電氣工程/電子 (IBEE) 茨維考技術(shù)的工程服務(wù)進(jìn)行測(cè)量;如圖2中所示,這個(gè)器件的傳導(dǎo)放射連同一個(gè)普通汽車原始設(shè)備制造商(OEM)限值線一同繪制。
圖2:一個(gè)典型CAN收發(fā)器的傳導(dǎo)放射
這個(gè)收發(fā)器的輸出放射超過了低頻和高頻區(qū)域內(nèi)的OEM要求。為了把放射降低到令人滿意的水平,必須使用某些外部濾波。
CAN總線中最常用的濾波器組件就是共模扼流圈(如圖3中所示)。共模扼流圈的構(gòu)成方式是將兩個(gè)線圈繞在同一個(gè)鐵芯上。在每個(gè)線圈繞組方向的安排方面,要使得共模電流(也就是說,每個(gè)線圈內(nèi)的電流方向一致)具有共用同一極性的磁通量。這使得共模扼流圈可以運(yùn)行為針對(duì)共模信號(hào)的電感器,從而提供一個(gè)隨上升的頻率而增加的阻抗。相反地,差分模式電流(也就是說,每個(gè)線圈內(nèi)的電流方向相反)將使它們的磁通量與反向極性相互作用。對(duì)于諸如CAN信號(hào)的均衡波形,每個(gè)線圈內(nèi)相反磁通量的幅度將會(huì)相等,因此不會(huì)在鐵芯內(nèi)累積靜磁通。這使得扼流圈運(yùn)行為一個(gè)針對(duì)CAN信號(hào)的短接電路。
圖3:共模扼流圈電路原理圖
這項(xiàng)技術(shù)在減少CAN總線放射方面十分有效。例如,當(dāng)用一個(gè)51μH共模扼流圈對(duì)上面不能滿足放射要求的器件進(jìn)行重新測(cè)試時(shí),性能得到極大提升(圖4)。
圖4:典型CAN收發(fā)器(具有共模扼流圈)的傳導(dǎo)放射
然而,在添加共模扼流圈時(shí)會(huì)帶來一些缺點(diǎn)。使用共模扼流圈時(shí)的一個(gè)明顯劣勢(shì)就是印刷電路板上需要額外的空間,并且會(huì)產(chǎn)生多余的物料清單成本。不過,除此之外,還應(yīng)該考慮某些對(duì)CAN總線的細(xì)微影響。由于扼流圈線圈會(huì)引入某些串聯(lián)電感,當(dāng)這個(gè)電感與CAN網(wǎng)絡(luò)的寄生電容組合在一起時(shí)會(huì)生成諧振。盡管在大多數(shù)頻帶內(nèi)減少了共模噪聲,這些諧振會(huì)在諧振頻率上導(dǎo)致噪聲數(shù)量增加??梢栽趫D5中所示的共模噪聲波形中觀察到這個(gè)影響。
圖5:由扼流圈電感導(dǎo)致的共模噪聲
這個(gè)窄帶噪聲特別難管理。它的幅度往往很強(qiáng),并且,由于扼流圈電感和總線電容的變化,其頻率也會(huì)隨著系統(tǒng)的不同而發(fā)生變化。需要注意的是,一個(gè)共模扼流圈的電感值通常在較寬的公差范圍內(nèi)指定(比如說標(biāo)稱值的-30%到50%)。相似地,一個(gè)CAN網(wǎng)絡(luò)的總線電容將根據(jù)所使用電纜連接的類型和長(zhǎng)度、網(wǎng)絡(luò)中的節(jié)點(diǎn)數(shù)量和每個(gè)節(jié)點(diǎn)的設(shè)計(jì)而發(fā)生變化。共模扼流圈的另外一個(gè)意外結(jié)果就是總線上增高的大瞬態(tài)電壓風(fēng)險(xiǎn)。諸如到電源、電池電壓或系統(tǒng)接地的短接等故障情況會(huì)導(dǎo)致共模電流的突然變化。這會(huì)在短路連接/斷開,以及CAN驅(qū)動(dòng)在顯性和隱性狀態(tài)之間變換時(shí)出現(xiàn)。當(dāng)流經(jīng)扼流圈電感的電流快速變化時(shí),會(huì)在驅(qū)動(dòng)器IC的CAN端子上產(chǎn)生一個(gè)較大的電壓電位。在某些情況下,這個(gè)電壓有可能超過CAN器件的瞬態(tài)過壓處理能力,并且會(huì)導(dǎo)致永久損壞。
為了在避免與共模扼流圈有關(guān)的不利影響的同時(shí)減少放射,可使用一個(gè)替代解決方案:減少CAN驅(qū)動(dòng)器的共模噪聲輸出。這看起來似乎簡(jiǎn)單而又直接,但是這需要半導(dǎo)體廠商進(jìn)行仔細(xì)而又認(rèn)真的設(shè)計(jì)。隱性和顯性狀態(tài)期間的CANH和CANL電壓電平需要受到嚴(yán)格控制,以確保CAN總線波形盡可能地保持平衡。
此外,當(dāng)CANH和CANL線路在顯性和隱性狀態(tài)之間變換時(shí),它們之間的變換時(shí)間和定時(shí)偏移需要良好匹配,以限制出現(xiàn)在高頻頻帶內(nèi)的共模噪聲。
針對(duì)TI TCAN1042-Q1 CAN收發(fā)器的瞬態(tài)波形如圖6中所示。圖7中給出的是相應(yīng)的放射曲線圖。
圖6:CANH/CANL輸出和共模噪聲
圖7:一個(gè)汽車故障保護(hù)CAN收發(fā)器的傳導(dǎo)放射
TCAN1042-Q1的良好匹配輸出級(jí)使得輸出共模噪聲極低。這使得在不使用扼流圈等外部共模濾波組件的情況下,放射性能符合OEM的要求。
結(jié)論
雖然共模扼流圈作為一種緩解CAN總線EMC問題的方法,目前廣泛應(yīng)用于汽車行業(yè),全新的高性能收發(fā)器正在使共模扼流圈變得可有可無。不使用共模扼流圈,可以在避免電路諧振和電感電壓尖峰等問題的同時(shí),使CAN總線的實(shí)現(xiàn)方式變得更小、成本更低。
特別推薦
- X-CUBE-STL:支持更多STM32, 揭開功能安全的神秘面紗
- 大聯(lián)大世平集團(tuán)的駕駛員監(jiān)控系統(tǒng)(DMS)方案榮獲第六屆“金輯獎(jiǎng)之最佳技術(shù)實(shí)踐應(yīng)用”獎(jiǎng)
- 貿(mào)澤推出針對(duì)基礎(chǔ)設(shè)施和智慧城市的工程技術(shù)資源中心
- 大普技術(shù)自主可控、高精度、小型化TCXO——對(duì)講機(jī)應(yīng)用
- Melexis創(chuàng)新推出集成喚醒功能的汽車制動(dòng)踏板位置傳感器芯片方案
- Vishay推出的新款高能浪涌限流PTC熱敏電阻,可提高有源充放電電路性能
- 美芯晟推出支持ALS和Flicker的小尺寸閃爍光傳感器芯片
技術(shù)文章更多>>
- 車用開關(guān)電源的開關(guān)頻率定多高才不影響EMC?
- 貿(mào)澤推出針對(duì)基礎(chǔ)設(shè)施和智慧城市的工程技術(shù)資源中心
- “扒開”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
Cirrus Logic
CNR
CPU
CPU使用率高
Cree
DC/AC電源模塊
dc/dc
DC/DC電源模塊
DDR2
DDR3
DIY
DRAM
DSP
DSP
D-SUB連接器
DVI連接器
EEPROM
Element14
EMC
EMI
EMI濾波器
Energy Micro
EPB
ept
ESC
ESD
ESD保護(hù)
ESD保護(hù)器件
ESD器件
Eurotect