【導讀】在逆變器電路中,開關器件的反向恢復時間trr(Reverse recovery time)特性對損耗的影響很大。在這里,我們將使用“ROHM Solution Simulator”的“Power Device Solution Circuit”進行仿真,以確認trr對逆變器電路的影響。
逆變器電路的優(yōu)化
● 在選擇逆變器電路中的開關器件時,要選擇trr小的產品,這一點很重要。
● 如果逆變器電路中的開關器件的trr大,則開關損耗會增加。
● 如果逆變器電路中的開關器件是MOSFET,請仔細確認內部二極管的trr特性。
01 反向恢復時間trr對逆變器電路的影響
在逆變器電路中,開關器件的反向恢復時間trr(Reverse recovery time)特性對損耗的影響很大。在這里,我們將使用“ROHM Solution Simulator”的“Power Device Solution Circuit”進行仿真,以確認trr對逆變器電路的影響。
02 仿真所用的逆變器電路
作為示例,我們使用上一篇文章中給出的Power Device Solution Circuit一覽表中的逆變器電路“B-6. 3-Phase 3-Wire Inverter Vo=200V Po=5kW”(圖1)。更改該逆變器電路的開關器件(黃色框)并進行仿真,以確認trr的影響。
圖1:Power Device Solution Circuit逆變器電路B-6. 3-Phase 3-Wire Inverter Vo=200V Po=5kW
03 trr特性在逆變器電路中的重要性
圖2顯示了圖1的逆變器電路中開關時的電流路徑。
在逆變器電路中,為了調整供給的功率,通過PWM和PFM等的控制,使High side(高邊)和Low side(低邊)的器件交替ON/OFF。圖2中的①~⑤表示其工作過程,并反復進行該工作過程。
著眼點在于從④到⑤的工作中,由于反向恢復電流在High side從OFF變?yōu)镺N的時間點流過Low side的內部二極管,因此,直通電流會從High side流向Low side(紅色所示)。
圖2:開關時的電流路徑
該反向恢復電流對續(xù)流側器件(Low side)本身的損耗影響很小,但如圖3所示,對于開關側器件(High side),由于在VDS變化之前這種反向恢復電流會疊加在正常的開關電流中,從而會造成非常大的導通損耗。因此,在逆變器電路中,要選擇trr小的開關器件,這一點很重要。
圖3:開關側器件(High side)的導通波形示例以及trr的大小與開關損耗之間的關系
04 trr特性差異帶來的開關損耗比較
圖4是在圖1的逆變器電路中,使用面向普通開關應用的超級結MOSFET R6047KNZ4作為開關器件時,以及使用以內置二極管的高速trr著稱的PrestoMOS? R6050JNZ4時(圖1的黃色框)的開關損耗和開關波形仿真結果。
圖4:不同trr特性的開關器件的開關損耗和波形比較(仿真)
如仿真波形所示,由于trr特性的差異,導通損耗存在顯著差異。與R6047KNZ4相比,內部二極管具有高速trr特性的R6050JNZ4的導通損耗降低至約1/5。順便提一下,R6047KNZ4的內部二極管的trr為700ns(Typ.),R6050JNZ4為120ns(Typ.),不到1/5。
此外,在分析整個逆變器電路工作期間開關器件(MOSFET)的損耗時,如圖5所示,可以看出trr對損耗具有很大影響。
圖5:普通開關MOSFET和高速trr MOSFET的損耗分析
根據該結果,可以說在選擇逆變器電路中的開關器件時,要選擇內部二極管具有高速trr的產品,這一點很重要。
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。
推薦閱讀: