【導(dǎo)讀】高功率LED在現(xiàn)代照明系統(tǒng)中的應(yīng)用數(shù)量不斷激增,涵蓋汽車前照燈、工業(yè)/商業(yè)標(biāo)識(shí)、建筑照明以及各種消費(fèi)電子等應(yīng)用。行業(yè)之所以轉(zhuǎn)向LED技術(shù),是因?yàn)楣虘B(tài)照明與傳統(tǒng)光源相比具有明顯的優(yōu)勢(shì):電能轉(zhuǎn)換為光輸出不僅效率高,而且使用壽命長(zhǎng)。
隨著越來越多的應(yīng)用采用LED照明,為了提高光輸出,對(duì)LED更高電流的需求也日益增長(zhǎng)。驅(qū)動(dòng)大電流LED串的最大挑戰(zhàn)之一是在功率轉(zhuǎn)換器級(jí)保持高效率,從而提供穩(wěn)定調(diào)節(jié)的LED電流。功率轉(zhuǎn)換器效率不高體現(xiàn)為電流調(diào)節(jié)器電路的開關(guān)元件引起的發(fā)熱現(xiàn)象。
LT3762 是一款同步升壓型LED控制器,旨在減少高功率升壓型LED驅(qū)動(dòng)器系統(tǒng)中常見的效率損耗源。該器件的同步運(yùn)行可最大限度地減少異步DC-DC轉(zhuǎn)換器中箝位二極管的正向壓降通常會(huì)產(chǎn)生的損耗。這一效率提升使LT3762能夠提供比類似異步升壓型LED驅(qū)動(dòng)器更高的輸出電流,特別是在低輸入電壓時(shí)。
為了改善低輸入電壓時(shí)的工作性能,通過配置一個(gè)板載DC-DC穩(wěn)壓器,即使輸入電壓降至7.5 V以下,也能為柵極驅(qū)動(dòng)電路提供7.5 V的電壓。在低輸入電壓條件下提供強(qiáng)大的柵極驅(qū)動(dòng)電壓源,使得MOSFET在輸入電壓降低時(shí)產(chǎn)生較少的熱量,從而使工作電壓輸入范圍最低達(dá)3 V。
圖1. LT3762演示電路(DC2342A)可在寬輸入電壓范圍內(nèi)以2 A(最高32 V)驅(qū)動(dòng)LED。通過額外的MOSFET和電容可輕松修改該演示電路,以提高輸出功率。
該款升壓型LED控制器可配置為在100 kHz至1 MHz固定開關(guān)頻率之間工作,提供−30% × fSW展頻調(diào)制選項(xiàng),以降低與開關(guān)相關(guān)的EMI能量峰值。LT3762可采用升壓、降壓或升壓/降壓拓?fù)潋?qū)動(dòng)LED。高端PMOS斷開開關(guān)有助于PWM調(diào)光,并在LED處于開路/短路狀態(tài)時(shí)保護(hù)器件免受潛在損害。
LT3762采用內(nèi)部PWM發(fā)生器,利用單個(gè)電容和一個(gè)直流電壓來設(shè)置頻率和脈沖寬度,以實(shí)現(xiàn)高達(dá)250:1的PWM調(diào)光比,也可使用外部PWM信號(hào)實(shí)現(xiàn)高達(dá)3000:1的調(diào)光比。
圖2中的原理圖顯示使用LT3762的演示電路應(yīng)用(DC2342A),其中LT3762配置為在4 V至28 V的輸入電壓范圍內(nèi)以2 A(最高32 V)驅(qū)動(dòng)LED。LT3762同步升壓型LED控制器采用4 mm × 5 mm QFN封裝和28引腳TSSOP封裝。
圖2. 32 V、2 A LT3762升壓型LED驅(qū)動(dòng)器。
同步開關(guān)
在異步DC-DC轉(zhuǎn)換器拓?fù)渲?,肖特基箝位二極管用作無源開關(guān),以簡(jiǎn)化轉(zhuǎn)換器對(duì)單個(gè)MOSFET進(jìn)行脈沖寬度調(diào)制的控制方案。雖然這確實(shí)簡(jiǎn)化了控制,但它限制了輸出電流的大小。肖特基二極管與PN結(jié)器件一樣,在任何電流通過器件之前都會(huì)具有正向壓降。由于肖特基二極管的功耗是其正向壓降與電流的乘積,因此輸出電流水平過高將產(chǎn)生數(shù)瓦的導(dǎo)通功耗,從而使肖特基二極管升溫,最終導(dǎo)致轉(zhuǎn)換器效率降低。
LT3762同步開關(guān)轉(zhuǎn)換器與異步轉(zhuǎn)換器不同,不會(huì)有輸出電流受限的情況,這是因?yàn)橥睫D(zhuǎn)換器采用第二MOSFET代替肖特基二極管。MOSFET與肖特基二極管不同,它沒有正向壓降。相反,當(dāng)MOSFET處于完全增強(qiáng)狀態(tài)時(shí),其漏極到源極間的電阻非常小。在大電流下,MOSFET產(chǎn)生的導(dǎo)通損耗遠(yuǎn)低于肖特基二極管,因?yàn)楣呐c漏源電阻的平方和通過器件的電流的乘積成正比。即使在最低7 V的全功率輸入電壓下,MOSFET也只會(huì)面臨大約30°C的溫升(如圖3所示)。
圖3. 在相同測(cè)試條件下,選用類似的元件,同步LT3762(左圖)驅(qū)動(dòng)2 A、32 V的LED串,其溫升遠(yuǎn)低于異步LT3755-2電路(右圖)。這種熱性能的提高歸功于以同步MOSFET代替肖特基箝位二極管,從而可消除二極管正向壓降引起的損耗。
低輸入電壓工作
高功率升壓型LED控制器的另一個(gè)挑戰(zhàn)發(fā)生在低輸入電壓工作期間。大多數(shù)升壓型DC-DC穩(wěn)壓器IC使用由器件輸入端供電的內(nèi)部LDO穩(wěn)壓器,為IC中的模擬和數(shù)字控制電路提供較低的電壓電源。在從內(nèi)部LDO穩(wěn)壓器獲取電源的電路中,柵極驅(qū)動(dòng)器消耗的功率最大,并且它的性能受LDO穩(wěn)壓器輸出波動(dòng)的影響。當(dāng)輸入電壓降至LDO的輸出電壓以下時(shí),LDO輸出開始驟降,這將限制柵極驅(qū)動(dòng)器正常增強(qiáng)MOSFET的能力。當(dāng)MOSFET處于未完全增強(qiáng)狀態(tài)時(shí),它們工作于較高電阻狀態(tài),因此當(dāng)電流通過器件時(shí)會(huì)以熱量形式耗散功率。
升壓轉(zhuǎn)換器拓?fù)渲械牡洼斎腚妷汗ぷ魈匦詫?dǎo)致輸入電流較高,當(dāng)該電流必須流過電阻更大的MOSFET器件時(shí),會(huì)加劇導(dǎo)通損耗。根據(jù)穩(wěn)壓器IC的柵極驅(qū)動(dòng)電壓,這會(huì)嚴(yán)重限制器件可實(shí)現(xiàn)且不發(fā)生過熱的低輸入電壓范圍。
LT3762采用集成式降壓-升壓型DC-DC穩(wěn)壓器,而非LDO穩(wěn)壓器,即使輸入電壓很低時(shí),也可為內(nèi)部電路提供7.5 V的電壓。該降壓-升壓型穩(wěn)壓器僅占用LT3762 IC的三個(gè)引腳,只需兩個(gè)額外元件。與具有4.5 V和6 V最小輸入電壓的內(nèi)部LDO控制器器件相比,LT3762能夠?qū)⑤斎腚妷汗ぷ鞣秶孪迶U(kuò)展至3 V。降壓-升壓型轉(zhuǎn)換器的7.5 V輸出可為柵極驅(qū)動(dòng)器提供電源,并允許使用6 V/7 V柵極驅(qū)動(dòng)MOSFET。MOSFET的柵極驅(qū)動(dòng)電壓越高,往往漏源電阻就越低,并且與柵極驅(qū)動(dòng)電壓較低的類似器件相比,(除開關(guān)損耗以外)工作效率更高。
圖4. 32 V、2 A LT3762 LED驅(qū)動(dòng)器可在寬輸入范圍內(nèi)保持高效率。低VIN折 返有助于避免過大的開關(guān)/電感電流。異步開關(guān)以24 V輸入電壓?jiǎn)?dòng)。
靈活的拓?fù)?/div>
與ADI公司大多數(shù)其他升壓型LED驅(qū)動(dòng)器一樣,LT3762驅(qū)動(dòng)LED的模式可重新配置,既可采用升壓配置,也可采用降壓、升壓-降壓和降壓-升壓模式。在這些升壓型轉(zhuǎn)換器的拓?fù)渥凅w中,利用ADI公司獲得專利的升壓-降壓模式配置可作為升壓/降壓型轉(zhuǎn)換器工作,同時(shí)還具有低EMI工作的優(yōu)勢(shì)。該拓?fù)淅脙蓚€(gè)電感,一個(gè)面向輸入,另一個(gè)則面向輸出,幫助濾除開關(guān)所產(chǎn)生的噪聲。這兩個(gè)電感有助于抑制耦合到輸入電源、可能連接的其他器件以及LED負(fù)載的EMI。
還可在升壓-降壓模式的拓?fù)渲刑砑宇~外電路,以提供LED–節(jié)點(diǎn)到GND的短路保護(hù)。圖5中的原理圖顯示LT3762采用升壓-降壓模式配置,并增加了該保護(hù)電路。當(dāng)LED–短路到GND時(shí),會(huì)強(qiáng)制關(guān)閉M4,以阻斷經(jīng)過電感到輸入的導(dǎo)通路徑并防止過度消耗電流。強(qiáng)制關(guān)閉M4時(shí),D3將EN/UVLO引腳拉至低電平,從而在消除短路前阻止轉(zhuǎn)換器開關(guān)。將這一額外保護(hù)電路與LT3762的內(nèi)置開路/短路檢測(cè)結(jié)合使用,就能獲得一個(gè)能夠應(yīng)對(duì)惡劣環(huán)境中各種故障狀況的強(qiáng)健解決方案。
圖5. LT3762采用25 V、1.5 A升壓-降壓配置,帶有額外的LED–至GND的短路保護(hù)。
結(jié)論
異步升壓型轉(zhuǎn)換器正常工作時(shí),通常很難避免在提供高輸出電流時(shí),不會(huì)產(chǎn)生大量的功率損失并造成箝位二極管發(fā)熱。除了肖特基二極管產(chǎn)生的損耗之外,這些轉(zhuǎn)換器在輸入電壓降低時(shí)難以保持最大功率輸出能力,這限制了輸入范圍內(nèi)的功率輸出。異步DC-DC轉(zhuǎn)換器根本無法適用于更高功率水平,因此必須采用同步開關(guān)方案以滿足應(yīng)用規(guī)格要求。LT3762升壓型LED控制器通過其同步開關(guān)解決了提供大電流輸出的問題,由于采用了板載DC-DC轉(zhuǎn)換器,它能夠在更低的輸入電壓下工作,并且可靈活采用各種電路拓?fù)洹?/div>
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器