如何轉(zhuǎn)換開(kāi)關(guān)電源系統(tǒng)電壓模式與電流模式?
發(fā)布時(shí)間:2016-11-30 責(zé)任編輯:wenwei
【導(dǎo)讀】通常在討論這兩種工作模式的時(shí)候,所指的是理想的電壓模式和電流模式。然而,在實(shí)際的應(yīng)用中,電流模式的開(kāi)關(guān)電源系統(tǒng),當(dāng)輸出負(fù)載變化時(shí),或者在一些工作條件,為了系統(tǒng)的穩(wěn)定,增加一些補(bǔ)償?shù)男盘?hào),此時(shí),系統(tǒng)會(huì)在電流模式中引入部分的電壓模式特性,或者完全進(jìn)入電壓模式。
1.1 輕載時(shí)電流模式趨向于電壓模式
電源系統(tǒng)進(jìn)入輕載或空載時(shí),變換器通常工作在突發(fā)模式和跳脈沖模式。對(duì)于跳脈沖模式,變換器進(jìn)入非連續(xù)電流模式,高端的開(kāi)關(guān)管的開(kāi)通時(shí)間為控制器所設(shè)定的最小導(dǎo)通時(shí)間,同時(shí)在有一些開(kāi)關(guān)周期,高端的開(kāi)關(guān)管不導(dǎo)通,也就是屏蔽,或跳去一些開(kāi)關(guān)脈沖,以維持輸出電壓的調(diào)節(jié)。
注意到:在輕載或空載時(shí),電流信號(hào)很小,系統(tǒng)也很難檢測(cè)到電流信號(hào),另一方面,由于高端的開(kāi)關(guān)管的開(kāi)通時(shí)間固定為最小導(dǎo)通時(shí)間,已不受電流檢測(cè)信號(hào)的調(diào)節(jié),電流反饋事實(shí)上已經(jīng)不起作用,也就不參與到反饋環(huán)節(jié)。系統(tǒng)此時(shí)工作于標(biāo)準(zhǔn)的電壓模式。
對(duì)于突發(fā)模式,輸出電壓完全由滯洄比較器控制,滯洄比較器控制通過(guò)檢測(cè)輸出電壓的變化,將輸出電壓設(shè)定在允許的上限和下限的范圍內(nèi),系統(tǒng)此時(shí)也是工作于標(biāo)準(zhǔn)的電壓模式。
1.2 使用大的電感值趨向于電壓模式
輸出電感的選擇及設(shè)計(jì)是基于輸出DC電壓的穩(wěn)態(tài)和瞬態(tài)的要求。較大的電感值可減小輸出紋波電流和紋波電壓,減小磁芯的損耗,但在負(fù)載瞬變過(guò)程中改變電感電流的時(shí)間會(huì)加長(zhǎng),同時(shí)增大電感的成本和體積。較小的電感值可以得到較低的直流銅損,但是交流磁芯損耗和交流繞線電阻損耗會(huì)變大。
圖1:不同電感電流
同時(shí)使用大的電感時(shí),電感電流的斜率減小,在理想的狀態(tài)下,若電感值為無(wú)窮大,那么在整個(gè)開(kāi)關(guān)周期,電感電流為直流值,電流檢測(cè)信號(hào)就不在起作用,也就是標(biāo)準(zhǔn)的電壓模式。因此使用的電感值越大,工作于電流模式的控制就越接近于電壓模式,在負(fù)載瞬變過(guò)程中,系統(tǒng)動(dòng)特性越差。因此對(duì)于電流模式,折衷的方法是選擇電感紋波電流峰峰值在輸出負(fù)載電流額定值的20%到40%之間。
1.3 斜坡補(bǔ)償?shù)碾娏髂J节呄蛴跒殡妷耗J?/strong>
理論上,當(dāng)占空比大于50%時(shí),電流模式就要加斜坡補(bǔ)償,系統(tǒng)才能穩(wěn)定的工作。否則,就會(huì)產(chǎn)生次諧波振蕩。在實(shí)際的應(yīng)用中,占空比大于40%時(shí),就要加斜坡補(bǔ)償。占空比大于50%時(shí),斜坡補(bǔ)償,由于電感充分激磁,而去磁不足,因此輸出的電壓將比預(yù)設(shè)定的值高,并將繼續(xù)升高,直到較慢的電壓控制回路調(diào)整電流設(shè)定點(diǎn)為止,然后輸出電壓又下降至低于期望值,形成次諧波振蕩。
次諧波振蕩典型的特性就是在一個(gè)開(kāi)關(guān)周期,脈沖寬度較寬,在下一個(gè)開(kāi)關(guān)周期,脈沖寬度變窄,在每三個(gè)開(kāi)關(guān)周期,脈沖寬度又變寬,如此反復(fù)。此時(shí)可以看到輸出電壓不穩(wěn)定,有時(shí)還可以聽(tīng)到音頻的噪聲。
圖2中,紅線斜坡補(bǔ)償,實(shí)線三角形波為加斜坡補(bǔ)償?shù)碾姼械碾娏鞑ㄐ?,虛線為沒(méi)加斜坡補(bǔ)償?shù)碾姼械碾娏鞑ㄐ?。如果用下降沿的鋸齒波電壓,則其加在電壓誤差放大器的輸出上,用以控制電流檢測(cè)信號(hào);如果用上升沿的鋸齒波電壓,則其加在電流檢測(cè)信號(hào)上,然后與電壓誤差放大器的輸出進(jìn)行比較。
注意到,內(nèi)部的斜坡補(bǔ)償將使總的電流斜坡減小,即斜坡補(bǔ)償使真正的電感電流的斜率降低,可以去除不同占空比對(duì)平均電感電流大小的擾動(dòng)作用,使得所控制的峰值電感電流最后收斂于平均電感電流,因而合成波形信號(hào)要有斜坡補(bǔ)償信號(hào)與實(shí)際電感電流信號(hào)兩部分合成構(gòu)成,從而促使變換器從電流模式向電壓模式轉(zhuǎn)化。
所加的斜坡補(bǔ)償越大,變換器越接近電壓模式,當(dāng)外加補(bǔ)償斜坡信號(hào)的斜率增加到一定程度,峰值電流模式控制就會(huì)轉(zhuǎn)化為電壓模式控制。因?yàn)槿魧⑿逼卵a(bǔ)償信號(hào)完全用振蕩電路的三角波代替,就成為電壓模式控制,只不過(guò)此時(shí)的電流信號(hào)可以認(rèn)為是一種電流前饋信號(hào)。
圖2:斜坡補(bǔ)償
斜坡補(bǔ)償也降低了電流環(huán)路的增益,降低的系統(tǒng)內(nèi)部設(shè)定的限流點(diǎn),使系統(tǒng)實(shí)際所加的負(fù)載電流值降低。
當(dāng)處于空載狀態(tài),輸出電流為零并且斜坡補(bǔ)償信號(hào)幅值比較大的話,峰值電流模式控制就實(shí)際上就完全變?yōu)殡妷耗J娇刂啤?nbsp;
通常在討論這兩種工作模式的時(shí)候,所指的是理想的電壓模式和電流模式。然而,在實(shí)際的應(yīng)用中,電壓模式的開(kāi)關(guān)電源系統(tǒng),即系統(tǒng)反饋環(huán)中沒(méi)有引入電流取樣信號(hào),但也會(huì)采用其它的方式引入一定程度的電流反饋,電壓模式向電流模式轉(zhuǎn)變,從而提高系統(tǒng)動(dòng)態(tài)響。
2.1 電壓模式中輸出電容ESR取樣形成的平均電流模式
理想的電壓模式在一定的反饋網(wǎng)絡(luò)參數(shù)下,很難在整個(gè)電壓輸入范圍和輸出負(fù)載變化范圍內(nèi)都能穩(wěn)定的工作。輸出負(fù)載變化可以通過(guò)加大輸出電容同時(shí)使用ESR值大的電容來(lái)優(yōu)化其動(dòng)特性,盡管這樣做導(dǎo)致系統(tǒng)的成本和體積增加,同時(shí)增大輸出的電壓紋波。
通常,從直觀上理解,輸出電容ESR和輸出電容形成一個(gè)零點(diǎn),對(duì)于電流模式,這個(gè)零點(diǎn)不是必需的,因?yàn)殡娏髂J绞菃坞A的系統(tǒng),而且這個(gè)零點(diǎn)導(dǎo)致高頻的增益增加,系統(tǒng)容易受到高頻噪聲的干擾。所以電流模式或者使用ESR極低的陶瓷電容,使ESR零點(diǎn)提升到更高的頻率,就不會(huì)對(duì)反饋系統(tǒng)產(chǎn)生作用,或者再加入一個(gè)極點(diǎn)以抵消零點(diǎn)在高頻段的作用,加入極點(diǎn)的方法就是在ITH(Vc)管腳并一個(gè)對(duì)地的電容。
圖3:輸出電容ESR
電壓模式是LC形成的二階系統(tǒng),這個(gè)零點(diǎn)的引入可以一定的程度上抵消LC雙極點(diǎn)的一個(gè)極點(diǎn),使其向單階系統(tǒng)轉(zhuǎn)化。ESR越大,作用越明顯。因此電壓模式輸出電壓通常使用ESR大的電容。
另一方面,注意到,輸出電壓為:
Vo=Vco+ESR*DIL
DIL=a*Io
Vco為輸出電容的容抗上的電壓,DIL為電感的紋波電流,a為電流紋波系數(shù),一般取0.2-0.4。
輸出電壓的小信號(hào)值為:
DVo=VDco+D(ESR*a*Io)
若ESR小,式中后面的一項(xiàng)基本可以忽略;但是,由于電壓模式通常使用ESR值較大的輸出電容,這樣ESR就不可以忽略,由于ESR的作用,相當(dāng)于在輸入電壓的反饋信號(hào)中引入了一定程度的電流模式,電流模式反饋量為:D(ESR*a*Io)。
輸出電容的ESR將采樣的電流信號(hào)送到電壓誤差放大器的輸入端,和輸出電壓信號(hào)加在一起,經(jīng)過(guò)電壓誤差放大器放大,再送到PWM比較器,其工作的原理相當(dāng)于平均電流反饋。在電壓模式中,使用ESR大的輸出電容,相當(dāng)于引入一定程度的平均電流模式,從而增加系統(tǒng)對(duì)輸出負(fù)載變化的動(dòng)態(tài)響應(yīng),提高系統(tǒng)的穩(wěn)定性。
2.2 電壓模式中輸入電壓前饋引入電流模式
對(duì)于輸入電壓的變化,目前通常采用輸入電壓前饋技術(shù),來(lái)提高系統(tǒng)對(duì)輸入電壓變化的響應(yīng)。電壓模式中,內(nèi)部時(shí)鐘信號(hào)產(chǎn)生鋸齒波的斜率固定為k,圖2中的虛線所示。在沒(méi)有電壓前饋時(shí),產(chǎn)生的占空比為D*Ts,則有以下公式:
Vc=k*D*Ts
輸入電壓前饋就是在內(nèi)部鋸齒波上加入隨輸入電壓變化的斜坡,或者從Vc信號(hào)減去此斜坡。若采用輸入電壓前饋加在內(nèi)部鋸齒波上的方式,若外加的前饋電壓斜坡的斜率為ks,內(nèi)部鋸齒波和外加斜坡之和為:k+ks。
前饋前壓的斜率隨輸入電壓增加而增大,ks正比于Vin,即:ks正比于kVin*Vin,所以此時(shí)的占空比為:
D1=Vc/(k+ks)*Ts=Vc/(k+kVin*Vin)*Ts
占空比隨輸入電壓的增加立刻而減少,圖2中的實(shí)線所示,系統(tǒng)提前對(duì)輸入電壓變化做出相應(yīng)的響應(yīng)。
圖4:電壓模式加入輸入電壓前前饋
若不考慮效率,由功率平衡可以得到:Vin*Iin=Vo*Io,所以有:
ks=kVin*Vo*Io/Iin
從上式可以看到,所加的輸入電壓前饋信號(hào)也就是輸入的電流信號(hào)。事實(shí)上可以這樣理解:輸入電壓前饋技術(shù)也就是在理想的電壓模式中,疊加一定的電流反饋,以形成一定的電流反饋,從而增加系統(tǒng)對(duì)輸入電壓變化的響應(yīng)。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開(kāi)啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開(kāi)售Nordic Semiconductor nRF9151-DK開(kāi)發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開(kāi)啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開(kāi)發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽(yáng)能
太陽(yáng)能電池
泰科源
鉭電容
碳膜電位器