你的位置:首頁 > 光電顯示 > 正文

AD7879控制器支持在阻性觸摸屏上實(shí)現(xiàn)手勢(shì)識(shí)別

發(fā)布時(shí)間:2020-03-12 來源:Javier Calpe, Italo Medina, Alberto Carbajo, 和 Maria Jose Martinez 責(zé)任編輯:wenwei

【導(dǎo)讀】對(duì)于各種消費(fèi)、醫(yī)療、汽車和工業(yè)設(shè)備,增強(qiáng)的低成本觸控式用戶界面是一個(gè)極具價(jià)值的特性。在許多消費(fèi)電子應(yīng)用中,設(shè)計(jì)師偏向使用容性觸摸屏,而不愿使用阻性觸摸技術(shù),原因是前者可以跟蹤手指,似乎能夠提供更友好的用戶交互體驗(yàn)。目前,低成本阻性技術(shù)的應(yīng)用市場(chǎng)包括:只需要單點(diǎn)觸控、至關(guān)重要的極其精確的空間分辨率、利用觸控筆來實(shí)現(xiàn)特定功能(如亞洲語言符號(hào)識(shí)別等),或者用戶必須戴手套的場(chǎng)合。
 
雖然阻性技術(shù)傳統(tǒng)上是用來檢測(cè)屏幕上單點(diǎn)觸摸的位置,但本文提出了一個(gè)創(chuàng)新的兩點(diǎn)觸摸概念,它利用阻性觸摸屏控制器AD7879在廉價(jià)的阻性觸摸屏上檢測(cè)最常見的雙指手勢(shì)(縮放、捏合和旋轉(zhuǎn))。
 
阻性觸摸屏的經(jīng)典方法
 
典型的阻性觸摸屏包括兩個(gè)平行的氧化銦錫 (ITO)導(dǎo)電層,中間的間隙將兩層分開(圖1)。上層(Y)的邊緣電極相對(duì)于下層(X)的邊緣電極旋轉(zhuǎn)90°。當(dāng)對(duì)屏幕的一個(gè)小區(qū)域施加壓力,使這兩層發(fā)生電氣接觸時(shí),就發(fā)生了"觸摸"現(xiàn)象。如果在上層的兩個(gè)電極之間施加一個(gè)直流電壓,而下層懸空,則觸摸將使下層獲得與觸摸點(diǎn)相同的電壓。判斷上層方向觸摸坐標(biāo)的方法是測(cè)量下層的電壓,以便確定觸摸點(diǎn)處的電阻占總電阻的比值。然后交換兩層的電氣連接,獲得觸摸點(diǎn)在另一個(gè)軸上的坐標(biāo)。
 
連接直流電壓的層稱為''有源''層,電流與其阻抗成反比。測(cè)量電壓的層稱為無源層,無相關(guān)電流流經(jīng)該層。發(fā)生單點(diǎn)觸摸時(shí),在有源層中形成一個(gè)分壓器,無源層電壓測(cè)量通過一個(gè)模數(shù)轉(zhuǎn)換器讀取與觸摸點(diǎn)和負(fù)電極之間的距離成比例的電壓1.
 
由于成本低廉,傳統(tǒng)的4線阻性觸摸屏深受單點(diǎn)觸控應(yīng)用的歡迎。實(shí)現(xiàn)阻性多點(diǎn)觸控 的技術(shù)有多種,其中總是會(huì)用到一個(gè)矩陣布局屏幕,但屏幕制造成本高得嚇人。此外,控制器需要許多輸入和輸出來測(cè)量和驅(qū)動(dòng)各個(gè)屏幕帶,導(dǎo)致控制器成本和測(cè)量時(shí)間增加。
 
http://hiighwire.com/art/artinfo/id/80037842
圖1. (a) 阻性觸摸屏的結(jié)構(gòu) 
(b)用戶觸摸屏幕時(shí)的電氣接觸
 
超越單點(diǎn)觸控
 
雖然如此,但通過理解并模擬該過程背后的物理原理,我們可以從阻性觸摸屏提取更多信息。當(dāng)發(fā)生兩點(diǎn)觸摸時(shí),無源屏幕中的一段電阻加上觸點(diǎn)的電阻與有源屏幕的導(dǎo)電段并聯(lián),因此電源的負(fù)載阻抗減小,電流增大。阻性控制器的經(jīng)典方法是假設(shè)有源層中的電流恒定不變,無源層為等電位。兩點(diǎn)觸摸時(shí),這些假設(shè)不再成立,為了提取所需的信息,需要進(jìn)行更多測(cè)量。
 
阻性屏幕中的兩點(diǎn)觸摸檢測(cè)模型如圖2所示。Rtouch為層間的接觸電阻;在現(xiàn)有的大多數(shù)屏幕中,其數(shù)量級(jí)一般與兩層的電阻相同。如果有一個(gè)恒定的電流I流經(jīng)有源層的兩端,則有源層上的電壓為:
 
http://hiighwire.com/art/artinfo/id/80037842
http://hiighwire.com/art/artinfo/id/80037842
圖2. 阻性屏幕兩點(diǎn)觸摸的基本模型
 
手勢(shì)識(shí)別
 
以捏合(pinch)作為范例可以更好地描述手勢(shì)識(shí)別的工作原理。捏合手勢(shì)從兩根分開較遠(yuǎn)的手指觸摸開始,產(chǎn)生雙重接觸,使得屏幕的阻抗降低,有源層兩根電極之間的電壓差因此減小。隨著兩根手指越來越接近,并聯(lián)面積減小,因而屏幕的阻抗提高,有源層兩根電極之間的電壓差相應(yīng)地增大。
 
緊密捏合后,并聯(lián)電阻趨于0,Ru + Rd 提高到總電阻,因此電壓增大到:
 
http://hiighwire.com/art/artinfo/id/80037842
 
圖3顯示了一個(gè)沿著垂直(Y)軸捏合的例子。當(dāng)手勢(shì)開始時(shí),其中一層的兩根電極之間的電壓恒定不變,另一層則表現(xiàn)出階躍性降低,然后隨著手指相互靠近而提高
 
http://hiighwire.com/art/artinfo/id/80037842
圖3. 垂直捏合時(shí)的電壓測(cè)量
 
圖4顯示傾斜捏合時(shí)的電壓測(cè)量結(jié)果。這種情況下,兩個(gè)電壓均表現(xiàn)出階躍性降低,然后緩慢恢復(fù)。兩個(gè)恢復(fù)速率(利用各層的電阻歸一化)的比值可以用來檢測(cè)手勢(shì)的角度
 
http://hiighwire.com/art/artinfo/id/80037842
圖4. 傾斜捏合時(shí)的電壓測(cè)量
 
如果手勢(shì)為縮放(手指分開),其行為可以從上述討論推導(dǎo)出來。圖5顯示了沿各軸及沿傾斜方向縮放時(shí)測(cè)得的兩個(gè)有源層電壓趨勢(shì)。
 
http://hiighwire.com/art/artinfo/id/80037842
圖5. 沿不同方向縮放時(shí)的電壓趨勢(shì)
 
利用AD7879檢測(cè)手勢(shì)
 
AD7879觸摸屏控制器設(shè)計(jì)用于與4線式阻性觸摸屏接口。除了檢測(cè)觸摸動(dòng)作外,它還能測(cè)量溫度和輔助輸入端的電壓。所有四種觸摸測(cè)量加上溫度、電池、輔助電壓測(cè)量,均可以通過編程寫入其片內(nèi)序列器。
 
AD7879結(jié)合一對(duì)低成本運(yùn)算放大器,可以執(zhí)行上述捏合和縮放手勢(shì)測(cè)量,如圖6所示。
 
下面的步驟說明了手勢(shì)識(shí)別的過程
 
1. 在前半周期中,將一個(gè)直流電壓施加于上層(有源層),并測(cè)量X+引腳的電壓(對(duì)應(yīng)于VY+ – VY–),以提供與Y方向上的運(yùn)動(dòng)(接近還是分開)相關(guān)的信息。
2. 在后半周期中,將一個(gè)直流電壓施加于下層(有源層),并測(cè)量Y+引腳的電壓(對(duì)應(yīng)于VX+ – VX–),以提供與X方向上的運(yùn)動(dòng)(接近還是分開)相關(guān)的信息。
 
圖6所示的電路需要為差分放大器提供保護(hù),防止短接到VDD。在前半周期中,下方放大器的輸出短接到VDD。在后半周期中,上方放大器的輸出短接到VDD。為避免這種現(xiàn)象,AD7879的GPIO可以控制兩個(gè)外部模擬開關(guān),如圖7所示。
 
http://hiighwire.com/art/artinfo/id/80037842
圖6. 基本手勢(shì)檢測(cè)應(yīng)用圖
 
http://hiighwire.com/art/artinfo/id/80037842
圖7. 避免放大器輸出短接到VDD的應(yīng)用圖
 
這種情況下,AD7879設(shè)置為從機(jī)轉(zhuǎn)換模式,并且僅測(cè)量半個(gè)周期。當(dāng)AD7879完成轉(zhuǎn)換時(shí),產(chǎn)生一個(gè)中斷,主處理器重新設(shè)置AD7879以測(cè)量第二個(gè)半周期,并且改變AD7879 GPIO的值。第二轉(zhuǎn)換結(jié)束時(shí),兩層的測(cè)量結(jié)果均存儲(chǔ)在器件中
 
旋轉(zhuǎn)可以通過一個(gè)方向上的同時(shí)縮放和一個(gè)傾斜捏合來模擬,因此檢測(cè)旋轉(zhuǎn)并不困難。挑戰(zhàn)在于區(qū)別旋轉(zhuǎn)是順時(shí)針(CW)還是逆時(shí)針(CCW),這無法通過上述過程來實(shí)現(xiàn)。為了檢測(cè)旋轉(zhuǎn)及其方向,需要在兩層(有源層和無源層)上進(jìn)行測(cè)量,如圖8所示。圖7中的電路無法滿足之一要求,圖9提出了一種新的拓?fù)浣Y(jié)構(gòu)。
 
http://hiighwire.com/art/artinfo/id/80037842
圖8. 順時(shí)針和逆時(shí)針旋轉(zhuǎn)時(shí)的電壓測(cè)量
 
圖9所示的拓?fù)浣Y(jié)構(gòu)實(shí)現(xiàn)了如下功能:
 
● 半周期1:電壓施加于Y層,同時(shí)測(cè)量(VY+VY–), VX–和 VX+每完成一個(gè)測(cè)量,AD7879就會(huì)產(chǎn)生一個(gè)中斷,以便處理器改變GPIO配置。
● 半周期2:電壓施加于X層,同時(shí)測(cè)量(VX+ – VX–), VY–, and VY+.
 
圖9中的電路可以測(cè)量所有需要的電壓來實(shí)現(xiàn)全部性能,包括:a)單點(diǎn)觸摸位置;b)縮放、捏合、旋轉(zhuǎn)手勢(shì)檢測(cè)和量化;c)區(qū)別順時(shí)針與逆時(shí)針旋轉(zhuǎn)。用兩點(diǎn)觸摸手勢(shì)來完成單點(diǎn)觸摸操作時(shí),可以估計(jì)手勢(shì)的中心位置。
 
http://hiighwire.com/art/artinfo/id/80037842
圖9. 單點(diǎn)觸摸位置和手勢(shì)檢測(cè)的應(yīng)用圖
 
實(shí)用提示
 
輕柔手勢(shì)產(chǎn)生的電壓變化相當(dāng)微細(xì)。通過放大這種變化,可以提高系統(tǒng)的魯棒性。例如,可以在屏幕的電極與AD7879的引腳之間增加一個(gè)小電阻,這將能提高有源層的壓降,但單點(diǎn)觸摸定位精度會(huì)有所下降。
 
另一種方法是僅在低端連接上增加一個(gè)電阻,當(dāng)X層或Y層為有源層時(shí),僅檢測(cè)X–或Y–電極。這樣就可以應(yīng)用一定的增益,因?yàn)橹绷髦迪喈?dāng)?shù)汀?/div>
 
ADI公司有許多放大器和多路復(fù)用器可以滿足圖6、圖7和圖9所示應(yīng)用的需求。測(cè)試電路使用AD8506雙通道運(yùn)算放大器和ADG16xx系列模擬多路復(fù)用器;多路復(fù)用器的導(dǎo)通電阻很低,采用3.3 V單電源供電。
 
結(jié)束語
 
利用AD7879控制器和極少的輔助電路,可以檢測(cè)縮放、捏合和旋轉(zhuǎn)。只需在有源層上進(jìn)行測(cè)量,就能識(shí)別這些手勢(shì)。在主處理器的控制下,利用兩個(gè)GPIO測(cè)量無源層的電壓,可以區(qū)別旋轉(zhuǎn)方向。在該處理器中執(zhí)行相當(dāng)簡(jiǎn)單的算法,就能識(shí)別縮放、捏合和旋轉(zhuǎn),估計(jì)其范圍、角度和方向。
 
參考電路
 
(Information on all ADI components can be found at www.analog.com.)
 
1 Finn, Gareth. “New Touch-Screen Controllers Offer Robust Sensing for Portable Displays.” Analog Dialogue, Vol. 44, No. 2. February 2010.
 
致謝
 
本文獲得了西班牙瓦倫西亞中小企業(yè)協(xié)會(huì)(IMPIVA)通過項(xiàng)目IMIDTF/2009/15和西班牙教育與科學(xué)部通過項(xiàng)目Consolider/CSD2007-00018提供的部分資助。
 
本文作者感謝Colin Lyden、John Cleary和Susan Pratt在討論中提供的有益建議。
 
 
推薦閱讀:
 
貿(mào)澤新品快訊:ADI和TE聯(lián)手推出車間用工業(yè)通信解決方案
汽車RF前端主要設(shè)計(jì)技巧
高密度混合電力電容器:能源競(jìng)賽的新方向
“任性”的超級(jí)電容,選型可不能任性~
利用低功耗、單位增益差動(dòng)放大器實(shí)現(xiàn)低成本電流源
要采購(gòu)多路復(fù)用器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉