測量范德堡法電阻率和霍爾電壓
發(fā)布時間:2020-01-15 責(zé)任編輯:wenwei
【導(dǎo)讀】半導(dǎo)體材料研究和器件測試通常要測量樣本的電阻率和霍爾電壓。半導(dǎo)體材料的電阻率主要取決于體摻雜,在器件中,電阻率會影響電容、串聯(lián)電阻和閾值電壓。霍爾電壓測量用來推導(dǎo)半導(dǎo)體類型(n還是p)、自由載流子密度和遷移率。
為確定半導(dǎo)體范德堡法電阻率和霍爾電壓,進行電氣測量時需要一個電流源和一個電壓表。為自動進行測量,一般會使用一個可編程開關(guān),把電流源和電壓表切換到樣本的所有側(cè)。4200A-SCS參數(shù)分析儀擁有4個源測量單元(SMUs)和4個前置放大器(用于高電阻測量),可以自動進行這些測量,而不需可編程開關(guān)。用戶可以使用4個中等功率SMU (4200-SMU, 4201-SMU)或高功率SMU (4210-SMU, 4211-SMU),對高電阻材料,要求使用4200-PA前置放大器。4200A-SCS包括多項內(nèi)置測試,在需要時把SMU的功能自動切換到電壓表或電流源,霍爾電壓測量要求對樣本應(yīng)用磁場。
4200A-SCS包括交互軟件,在半導(dǎo)體材料上進行范德堡法和霍爾電壓測量。4200A-SCS Clarius+軟件提供了全面的程序庫,除電阻率和霍爾電壓測試外,還包括許多其他測試和項目。范德堡法和霍爾電壓測試是在Clarius V1.5和V1.6中新增的,包括計算確定表面或體積電阻率、霍爾遷移率和霍爾系數(shù)。
范德堡法電阻率測量
人們通常使用范德堡法(vdp)推導(dǎo)半導(dǎo)體材料的電阻率。這種四線方法用在擁有四個端子、均勻厚度的小的扁平形樣本上。電流通過兩個端子施加到樣本上,透過相反的兩個端子測量電壓下跌,如圖1所示。
圖1. 范德堡法配置
使用圖2所示的SMU儀器配置,圍著樣本的邊緣重復(fù)測量8次。
圖2. 范德堡法電阻率測量慣例。
然后使用這一串8項電壓測量(V1-V8)和測試電流(I)來計算電阻率(ρ),ρA和ρB是體積電阻率,fA和fB是樣本對稱度的幾何因數(shù),與兩個電阻比率QA和QB相關(guān)。公式如下:
圖3. 電阻率計算公式
霍爾電壓測量
霍爾電壓測量對半導(dǎo)體材料表征具有重要意義,因為從霍爾電壓和電阻率可以導(dǎo)出傳導(dǎo)率類型、載流子密度和遷移率。在應(yīng)用磁場后,可以使用下面的I-V測量配置測量霍爾電壓:
圖4. 霍爾電壓測量配置。
把正磁場B垂直應(yīng)用到樣本,在端子3和端子1之間應(yīng)用一個電流(I31pBp),測量端子2和端子4之間的電壓下跌(V24pBp)。顛倒電流(I31nBp),再次測量電壓下跌(V24nBp)。這種顛倒電流方法用來校正偏置電壓。然后,從端子2到端子4應(yīng)用電流(I24pBp),測量端子1和端子3之間的電壓下跌(V13pBp)。顛倒電流(I24nBp),再次測量電壓下跌(V13nBp)。顛倒磁場Bn,再次重復(fù)這一過程,測量電壓下跌V24pBn、V24nBn、V13pBn和V13nBn。
從8項霍爾電壓測量中,可以使用下面的公式計算平均霍爾系數(shù),RHC和RHD是霍爾系數(shù)(cm3/C),計算出RHC和RHD后,可以通過下面的公式確定平均霍爾系數(shù)(RHAVG),從范德堡法電阻率(ρAVG)(表示為輸出參數(shù)Volume_Resistivity)和霍爾系數(shù)(RHAVG)中,可以計算出霍爾遷移率(μH)。
使用4200A測量范德堡法電阻率和霍爾電壓
4200A-SCS配有四個SMU和前置放大器,簡化了范德堡法和霍爾電壓測量,因為它包含多項內(nèi)置測試,可以自動完成這些測量。在使用這些內(nèi)置測試時,四個SMUs連接到樣本的四個端子上,如圖5所示。對每項測量,每個SMU的功能會在電流源、電壓表或公共之間變化。先測量八項測試中每項測試的電壓下跌和測試電流,然后導(dǎo)出電阻率或霍爾系數(shù)?;魻栯妷簻y量要求對樣本應(yīng)用一個磁場。
圖5. 四個SMUs連接到被測樣本的四個端子上。
Clarius+測試庫包括范德堡法和霍爾遷移率測量的測試。在Select視圖中,可以使用屏幕右側(cè)Material材料過濾器,在Test Library測試庫中找到這些測試,如圖6所示。選擇測試,然后選擇Add添加,可以把這些測試添加到項目樹中。這些測試從vdpulib用戶程序庫中的用戶模塊創(chuàng)建。
圖6. 選擇范德堡法電阻率和霍爾系數(shù)測試。
可以使用范德堡法表面和體積電阻率測試。測試庫有兩項電阻率測試:vdp-surface-resistivity和vdp-volume-resistivity。vdp-surface-resistivity測試測量和計算電阻率,單位為Ω/square。對vdp-volume-resistivity測試,用戶必須輸入樣本厚度,然后計算出電阻率,單位為Ω-cm。對這兩項測試,都強制應(yīng)用電流,進行8項電壓測量。
還可以使用霍爾系數(shù)測試。使用四臺SMU儀器,強制應(yīng)用電流,使用正負磁場進行8項電壓測量。磁場使用固定磁鐵生成,會提示用戶顛倒磁場??梢栽跍y試庫中找到hall-coefficient測試,添加到項目樹中。
為成功地進行電阻率測量,我們必需考慮潛在的錯誤來源。主要為靜電干擾、泄漏電流、光線、溫度、載流子注入等。1)靜電干擾:當(dāng)帶電物體放到不帶電物體附近時,會發(fā)生靜電干擾。通常情況下,干擾的影響并不顯著,因為電荷在低電阻時會迅速消散。但是,高電阻材料不允許電荷迅速衰退,所以可能會導(dǎo)致測量不穩(wěn)定。由于DC或DC靜電場,可能會產(chǎn)生錯誤的讀數(shù)。2)泄漏電流:對高電阻樣本,泄漏電流可能會劣化測量,泄漏電流源于電纜、探頭和測試夾具的絕緣電阻,通過使用優(yōu)質(zhì)絕緣體、降低濕度、使用保護裝置等,可以最大限度地降低泄漏電流。3)光線:光敏效應(yīng)產(chǎn)生的電流可能會劣化測量,特別是在高電阻樣本上。為防止這種效應(yīng),應(yīng)把樣本放在暗艙中。4)溫度:熱電電壓也可能會影響測量精度,源電流導(dǎo)致的樣本變熱也可能會產(chǎn)生熱電電壓,實驗室環(huán)境中的溫度波動也可能會影響測量。由于半導(dǎo)體的溫度系數(shù)相對較大,所以可能需要使用校正因數(shù),補償實驗室中的溫度變化。5)載流子注入:此外,為防止少數(shù)/多數(shù)載流子注入影響電阻率測量,兩個電壓傳感端子之間的電壓差應(yīng)保持在100mV以下,理想情況下是25mV,因為熱電壓kt/q約為26mV。在不影響測量精度的情況下,測試電流應(yīng)盡可能低。
通過使用四個SMUs和內(nèi)置測試,可以利用4200A-SCS參數(shù)分析儀簡便地在半導(dǎo)體材料上實現(xiàn)范德堡法測量。通過使用用戶提供的磁鐵,還可以確定霍爾遷移率。如果想測試低電阻材料(如導(dǎo)體),可以使用基于Keithley 3765霍爾效應(yīng)卡的系統(tǒng),包括2182A納伏表。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機械表
石英石危害
時間繼電器
時鐘IC
世強電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器