中心議題:
- 計算機仿真
- 參數(shù)建模法
- 子電路建模法
解決方案:
- 直接通過研究器件資料得到所需參數(shù)的數(shù)值,生成庫文件
- 單元電路和集成電路新產(chǎn)品,由用戶自己創(chuàng)建子電路的網(wǎng)格表轉(zhuǎn)化庫文件
計算機仿真具有效率高、精度高、可靠性高和成本低等特點,已被廣泛應(yīng)用于電力電子電路(或系統(tǒng))的分析和設(shè)計。計算機仿真不僅可以取代系統(tǒng)許多繁瑣的人工分析,減輕勞動強度,提高分析和設(shè)計能力,還可以對電路進行優(yōu)化和改進,最大限度地降低設(shè)計成本,縮短系統(tǒng)研發(fā)周期。
但這些優(yōu)點都是基于元器件模型,電路的數(shù)學(xué)化主要是元器件的模型化,可以說沒有模型化就沒有電路的仿真分析。簡單的元器件,比如,電阻、電容和電感等,只需要一個或幾個參數(shù)就可以描述其電學(xué)性能。而各類半導(dǎo)體和集成器件,則需用很多參數(shù)來描述較復(fù)雜的建模過程。
目前各種仿真工具中都自帶很多常用的元器件模型,但是自帶模型庫永遠跟不上電子元器件的更新速度。這里針對建模的重要性和必要性,研究當(dāng)前流行的電子電路仿真工具的電子元器件模型,提出兩種建模方法:參數(shù)建模法和子電路建模法。
參數(shù)建模法
參數(shù)建模法主要是針對加工工藝相同的一類半導(dǎo)體器件提出的,其工作過程是先利用物理法或黑箱法構(gòu)建出不同復(fù)雜程度的等效電路,然后通過公式演算,得出這類半導(dǎo)體器件的參數(shù)。在使用過程中,若遇到該類器件,就可以通過直接設(shè)置參數(shù)值實現(xiàn)不同型號元器件的建模,從而省去重復(fù)構(gòu)建等效電路和繁瑣的方程式推導(dǎo)過程。
下面以N溝道MOS(metal-oxidesemiconductor)晶體管為例說明等效電路與參數(shù)之間的關(guān)系。典型的N溝道MOS晶體管組成示意圖如圖1所示。
設(shè)置柵極寬度為W,有效柵極長度為L,柵極下氧化層的厚度為tOX。MOS管的特性方程為:
式中,COX是每單位面積的柵極電容。Vth為柵極-源極間的閾值電壓。
[page]
當(dāng)VDS增加時,ID上升,直到溝道的漏極末端夾斷,ID不再上升。這種夾斷發(fā)生在VDS=VGS-Vth時。因此工作區(qū)MOS管的特性方程可簡化為:
通過式(2)得到如圖2所示的MOS晶體管等效電路,其中壓控電流源gmVgs是模型中最重要的部分,晶體管的跨導(dǎo)gm定義為:
將式(2)代入式(3),可得出:
圖2中,gsVs表示第2個壓控電流源,模擬漏極電流id上的體效應(yīng)。當(dāng)源極與地相連時,或其電壓不變化時,此電流源可忽略。當(dāng)體效應(yīng)不能忽略時,則有:
式中,γ是體效應(yīng)參數(shù),|2φF|為表面反轉(zhuǎn)電勢。圖2中,電阻rds表示有限輸出阻抗,模擬溝道長度調(diào)節(jié)和漏極電流因Vds改變而引起的效應(yīng),由式(1)可得:
圖2中,電容的求解過程參見參考文獻[1],以下給出結(jié)果:
Cgs是最大電容,需要較高精確度時可表示為:
LD是重疊區(qū)的距離。
[page]
第2大電容Csb表示為:式中,As是源極的結(jié)面積,Ps是源極的結(jié)周長,不包括與溝道相鄰的一邊,Cj-sw表示0V偏置下的側(cè)壁電容。
(Cj0偏置下的耗盡結(jié)電容)。
Cgd稱為密勒電容,其值為:Cgd=WCoxLD。
源極主體電容Cdb表示為:Cdb=C''''''''''''''''db+Cd-sw=AdCjd+PdCj-sw,其中,Ad是漏極的結(jié)面積,Pd是不包括與柵極相鄰部分的結(jié)周長
在仿真工具中建模,可指定如表1所示參數(shù),系統(tǒng)自動根據(jù)上述計算式確定等效電路參數(shù),從而完成該器件的建模。
在pspice中仿真得到預(yù)期結(jié)果,如圖4所示。
可見參數(shù)建模法省去了構(gòu)建等效電路的過程,只需通過廠商提供的器件特性參數(shù)就可以直接建模。但該方法只適用于固定結(jié)構(gòu)的半導(dǎo)體器件。
[page]
子電路建模法
隨著電子器件的不斷更新,單純依靠修改參數(shù)值進行建模已經(jīng)遠遠不能滿足現(xiàn)在電子電路仿真的需求。針對常用電路單元和集成電路新產(chǎn)品,本文提出一種為新產(chǎn)品建立一個子電路模型的方法,并將該模型作為一個器件添加到仿真軟件的模型庫,在仿真電路時用戶可以像調(diào)用自帶庫一樣直接使用該模型。
將此種的文本文件存為.lib的后綴名后,通過ModelEditor工具將該文件與器件符號聯(lián)系在一起,就可以使用在電路仿真中。圖5為AD648C的簡單運用電路,從圖6瞬態(tài)分析結(jié)果可知建模正確。
對于前面所述的器件內(nèi)部全部子電路建模法,很多時候并不能如此具體的了解一個器件內(nèi)部的所有結(jié)構(gòu),這種情況下只能通過模擬器件行為建模。直接在子電路中用運算函數(shù)代替電路本身。
對高壓開關(guān)穩(wěn)壓器MC33363進行以下的子電路連接網(wǎng)格表:
語句GSUPP34VALUE={IF(V(33)<3.5,250U,3.5M)},表示節(jié)點33和節(jié)點3、4之間連接的模塊實現(xiàn)當(dāng)輸入端33節(jié)點的電壓小于3.5V時,輸出端節(jié)點3和節(jié)點4之間的電壓為250μF,否則為3.5mV。該網(wǎng)格表使用到的EVALUE和GVALUE器件是將輸出量和輸入量之間運算函數(shù)關(guān)系用語句表示。EVALUE和GVALUE稱為模擬行為模型(ABM)器件,除了這兩個外還有:*SUM、*MULT、*TABLE、ABS、LOG等,帶有“*”符號的元器件,有E、G兩種類型。使用ABM器件可省去實現(xiàn)這些換算的電路,簡化子電路建模的工作量。
電路原理圖仿真的最大瓶頸在于電子器件的建模,針對這一難點給出兩種方法:一種是對于已經(jīng)參數(shù)化的典型半導(dǎo)體器件,可以直接通過研究器件資料得到所需參數(shù)的數(shù)值,生成庫文件:另一種是針對一些單元電路和集成電路新產(chǎn)品,由用戶自己創(chuàng)建子電路的網(wǎng)格表,再轉(zhuǎn)化為庫文件。實驗證明這兩種方法都是行之有效的。