你的位置:首頁 > EMC安規(guī) > 正文
【PCB設(shè)計(jì)小貼士3】輕松搞定“PCB布線設(shè)計(jì)“的經(jīng)驗(yàn)之談
發(fā)布時(shí)間:2014-11-27 責(zé)任編輯:sherryyu
【導(dǎo)讀】尤其是有源數(shù)字走線靠近高阻抗模擬走線時(shí),會(huì)引起嚴(yán)重的耦合噪聲,所以數(shù)字和模擬范圍確定后,謹(jǐn)慎布線對(duì)獲得成功的PCB是至關(guān)重要的。這里小編繼續(xù)為大家詳解超強(qiáng)PCB布線設(shè)計(jì)的相關(guān)經(jīng)驗(yàn),學(xué)完這些,搞定PCB布線設(shè)計(jì)肯定不在話下。
前面講解的:
http://hiighwire.com/emc-art/80024435
http://hiighwire.com/emc-art/80024436
超強(qiáng)PCB布線設(shè)計(jì)經(jīng)驗(yàn)談附原理圖(三)
布線需要考慮的問題很多,但是最基本的的還是要做到周密,謹(jǐn)慎。
寄生元件危害最大的情況
印刷電路板布線產(chǎn)生的主要寄生元件包括:寄生電阻、寄生電容和寄生電感。例如:PCB的寄生電阻由元件之間的走線形成;電路板上的走線、焊盤和平行走線會(huì)產(chǎn)生寄生電容;寄生電感的產(chǎn)生途徑包括環(huán)路電感、互感和過孔。當(dāng)將電路原理圖轉(zhuǎn)化為實(shí)際的PCB時(shí),所有這些寄生元件都可能對(duì)電路的有效性產(chǎn)生干擾。本文將對(duì)最棘手的電路板寄生元件類型 — 寄生電容進(jìn)行量化,并提供一個(gè)可清楚看到寄生電容對(duì)電路性能影響的示例。
圖1 在PCB上布兩條靠近的走線,很容易產(chǎn)生寄生電容。由于這種寄生電容的存在,在一條走線上的快速電壓變化會(huì)在另一條走線上產(chǎn)生電流信號(hào)。
圖2 用三個(gè)8位數(shù)字電位器和三個(gè)放大器提供65536個(gè)差分輸出電壓,組成一個(gè)16位D/A轉(zhuǎn)換器。如果系統(tǒng)中的VDD為5V,那么此D/A轉(zhuǎn)換器的分辨率或LSB大小為76.3mV。
[page]圖3 這是對(duì)圖2所示電路的第一次布線嘗試。此配置在模擬線路上產(chǎn)生不規(guī)律的噪聲,這是因?yàn)樵谔囟〝?shù)字走線上的數(shù)據(jù)輸入碼隨著數(shù)字電位器的編程需求而改變。
寄生電容的危害
大多數(shù)寄生電容都是靠近放置兩條平行走線引起的??梢圆捎脠D1所示的公式來計(jì)算這種電容值。
在混合信號(hào)電路中,如果敏感的高阻抗模擬走線與數(shù)字走線距離較近,這種電容會(huì)產(chǎn)生問題。例如,圖2中的電路就很可能存在這種問題。
為講解圖2所示電路的工作原理,采用三個(gè)8位數(shù)字電位器和三個(gè)CMOS運(yùn)算放大器組成一個(gè)16位D/A轉(zhuǎn)換器。在此圖的左側(cè),在VDD和地之間跨接了兩 個(gè)數(shù)字電位器(U3a和U3b),其抽頭輸出連接到兩個(gè)運(yùn)放(U4a和U4b)的正相輸入端。數(shù)字電位器U2和U3通過與單片機(jī)(U1)之間的SPI接口 編程。在此配置中,每個(gè)數(shù)字電位器配置為8位乘法型D/A轉(zhuǎn)換器。如果VDD為5V,那么這些D/A轉(zhuǎn)換器的LSB大小等于19.61mV。
這兩個(gè)數(shù)字電位器的抽頭都分別連接到兩個(gè)配置了緩沖器的運(yùn)放的正相輸入端。在此配置中,運(yùn)放的輸入端是高阻抗的,將數(shù)字電位器與電路其它部分隔離開了。這兩個(gè)放大器配置為其輸出擺幅限制不會(huì)超出第二級(jí)放大器的輸入范圍。
圖 4 在此示波器照片中,最上面的波形取自JP1(到數(shù)字電位器的數(shù)字碼),第二個(gè)波形取自JP5(相鄰模擬走線上的噪聲),最下面的波形取自TP10(16位D/A轉(zhuǎn)換器輸出端的噪聲)。
[page]
圖5 采用這種新的布線,將模擬線路和數(shù)字線路隔離開了。增大走線之間的距離,基本消除了在前面布線中造成干擾的數(shù)字噪聲。
圖 6 圖中示出了采用新布線的16位D/A轉(zhuǎn)換器的單個(gè)碼轉(zhuǎn)換結(jié)果,對(duì)數(shù)字電位器編程的數(shù)字信號(hào)沒有造成數(shù)字噪聲。
為使此電路具有16位D/A轉(zhuǎn)換器的性能,采用第三個(gè)數(shù)字電位器(U2a)跨接在兩個(gè)運(yùn)放(U4a和U4b)的輸出端之間。U3a和U3b的編程設(shè)定經(jīng) 數(shù)字電位器后的電壓值。如果VDD為5V,可以將U3a和U3b的輸出編程為相差19.61mV。此電壓大小經(jīng)第三個(gè)8位數(shù)字電位器R3,則自左至右整個(gè) 電路的LSB大小為76.3mV。此電路獲得最優(yōu)性能所需的嚴(yán)格器件規(guī)格如表1所示。
[page]
此電路有兩種基本工作模式。第一種模式可用于獲 得可編程、可調(diào)節(jié)的直流差分電壓。在此模式中,電路的數(shù)字部分只是偶爾使用,在正常工作時(shí)不使用。第二種模式是可以將此電路用作任意波形發(fā)生器。在此模式中,電路的數(shù)字部分是電路運(yùn)行的必需部分。此模式中可能發(fā)生電容耦合的危險(xiǎn)。
圖2所示電路的第一次布線如圖3所示。此電路是在實(shí)驗(yàn)室中快速設(shè)計(jì)出的,沒有注意細(xì)節(jié)。在檢查布線時(shí),發(fā)現(xiàn)將數(shù)字走線布在了高阻抗模擬線路的旁邊。需要強(qiáng)調(diào)的是,第一次就應(yīng)該正確布線,本文的目的是為了講解如何識(shí)別問題及如何對(duì)布線做重大改進(jìn)。
看一下此布線中不同的走線,可以明顯看到哪里可能存在問題。圖中的模擬走線從U3a的抽頭連接到U4a放大器的高阻抗輸入端。圖中的數(shù)字走線傳送對(duì)數(shù)字電位器設(shè)置進(jìn)行編程的數(shù)字碼。
在測(cè)試板上經(jīng)過測(cè)量,發(fā)現(xiàn)數(shù)字走線中的數(shù)字信號(hào)耦合到了敏感的模擬走線中,參見圖4。
系統(tǒng)中對(duì)數(shù)字電位器編程的數(shù)字信號(hào)沿著走線逐漸傳輸?shù)捷敵鲋绷麟妷旱哪M線路。此噪聲通過電路的模擬部分一直傳播到第三個(gè)數(shù)字電位器(U5a)。第三個(gè)數(shù)字電位器在兩個(gè)輸出狀態(tài)之間翻轉(zhuǎn)。解決這個(gè)問題的方法主要是分隔開走線,圖5示出了改進(jìn)的布線方案。
改變布線的結(jié)果如圖6所示。將模擬和數(shù)字走線仔細(xì)分開后,電路成為非常“干凈”的16位D/A轉(zhuǎn)換器。圖中的波形是第三個(gè)數(shù)字電位器的單碼轉(zhuǎn)換結(jié)果76.29mV。
結(jié)語
數(shù)字和模擬范圍確定后,謹(jǐn)慎布線對(duì)獲得成功的PCB是至關(guān)重要的。尤其是有源數(shù)字走線靠近高阻抗模擬走線時(shí),會(huì)引起嚴(yán)重的耦合噪聲,這只能通過增加走線之間的距離來避免。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 邁向更綠色的未來:GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動(dòng)汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
- 精準(zhǔn)監(jiān)測(cè)電離分?jǐn)?shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)
電腦OA
電腦電源
電腦自動(dòng)斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器