如何處理 SAR ADC 輸入驅(qū)動難題?
發(fā)布時(shí)間:2020-12-30 責(zé)任編輯:lina
【導(dǎo)讀】許多數(shù)據(jù)采集、工業(yè)控制和儀表應(yīng)用都需要超高速模數(shù)轉(zhuǎn)換器 (ADC),而逐次逼近寄存器 (SAR) 轉(zhuǎn)換器則能完全滿足這一要求。然而,我們必須確保 SAR 轉(zhuǎn)換器周圍的外部電路也能勝任這一任務(wù),才能確保成功的轉(zhuǎn)換結(jié)果。
許多數(shù)據(jù)采集、工業(yè)控制和儀表應(yīng)用都需要超高速模數(shù)轉(zhuǎn)換器 (ADC),而逐次逼近寄存器 (SAR) 轉(zhuǎn)換器則能完全滿足這一要求。然而,我們必須確保 SAR 轉(zhuǎn)換器周圍的外部電路也能勝任這一任務(wù),才能確保成功的轉(zhuǎn)換結(jié)果。對于 SAR 轉(zhuǎn)換器來說,需要特別注意的關(guān)鍵端子是其模擬信號輸入端——如果不加以重視,這些輸入引腳會產(chǎn)生穩(wěn)定性問題和電容電荷"反沖",從而導(dǎo)致轉(zhuǎn)換不準(zhǔn)確并延長信號采集時(shí)間。
在 SAR 轉(zhuǎn)換器應(yīng)用中,精確控制輸入信號的解決方案在于運(yùn)算放大器(運(yùn)放)的驅(qū)動。如搭配適當(dāng)?shù)妮敵鲭娮韬碗娙葜?,這些器件就是高分辨率、16 位和 20 位 SAR 轉(zhuǎn)換器系統(tǒng)的高精度穩(wěn)健解決方案的基礎(chǔ)。
本文將簡要討論實(shí)現(xiàn)穩(wěn)定準(zhǔn)確的 SAR ADC 轉(zhuǎn)換的相關(guān)問題。然后,介紹一款合適的運(yùn)放來驅(qū)動 SAR ADC,并說明如何實(shí)現(xiàn)必要的輸入驅(qū)動電路。我們將以 Analog Devices 的解決方案為例進(jìn)行說明。
SAR ADC 輸入電路
SAR ADC 驅(qū)動電路具有將 ADC 與其信號源隔離的運(yùn)算放大器(A1 和 A2)(圖1)。在該電路中,Rext 通過"隔離"放大器的輸出級與 ADC 容性負(fù)載(CIN+ 和 CIN-)和 Cext 隔離來保持穩(wěn)定。Cext 和 CREF 為 ADC 提供了一個(gè)近乎完美的輸入源,可以吸收來自 IN+、IN- 和 REF 輸入端子的開關(guān)電荷注入。輸入端子 (IN+, IN-) 在轉(zhuǎn)換器的采集期間跟蹤輸入信號 (VSIG+, VSIG-) 的電壓,為 ADC 輸入采樣電容 CIN+ 和 CIN- 充電。
以 Analog Device 的 AD7915 (16 位)和 AD4021(20 位)SAR ADC 為例觀察 ADC 內(nèi)部,可以看到該器件使用了電荷再分配數(shù)模轉(zhuǎn)換器 (DAC)。容性 DAC 有兩個(gè)相同的二元加權(quán)電容陣列。這兩個(gè)電容陣列連接非反相和反相比較器輸入端(圖 2)。
在采集階段,輸入端(IN+ 和 IN-)切換到電容陣列。此外,SW+ 和 SW- 閉合,將最小有效位 (LSB) 電容與地 (GND) 相連。在這種狀態(tài)下,電容陣列成為采樣電容,采集 IN+ 和 IN- 模擬信號。采集階段結(jié)束后,控制邏輯(右側(cè))的 CNV 輸入變?yōu)楦唠娖剑瑔愚D(zhuǎn)換階段。
轉(zhuǎn)換階段開始時(shí),先斷開 SW+ 和 SW-,將兩個(gè)電容陣列切換到 GND。在這種配置下,捕獲的 IN+ 和 IN- 差分電壓會導(dǎo)致比較器變得不平衡。電荷再分配 DAC 在 GND 和 REF 之間有條不紊地將電容器陣列的每個(gè)元件從最重要的位 (MSB) 切換到 LSB。比較器輸入按二元加權(quán)電壓步長來變化 (VREF/2N-1, VREF/2N-2...VREF/4, VREF/2)。控制邏輯將開關(guān)從 MSB 切換為 LSB,使得比較器回到平衡狀態(tài)。這個(gè)過程結(jié)束后,ADC 返回采集階段,控制邏輯產(chǎn)生 ADC 輸出代碼。
輸入電荷注入、電路穩(wěn)定性和驅(qū)動 AD7915 ADC
轉(zhuǎn)換過程的關(guān)鍵是獲取準(zhǔn)確的輸入信號電壓。當(dāng)驅(qū)動放大器準(zhǔn)確地向輸入電容器 CIN+ 和 CIN- 進(jìn)行充電時(shí),ADC 數(shù)據(jù)轉(zhuǎn)換過程就會順利進(jìn)行,同時(shí)保持穩(wěn)定,直至 ADC 采集時(shí)間結(jié)束。對設(shè)計(jì)者來說,問題在于 ADC 的輸入端引入了一個(gè)電容 (CIN+, CIN-) 以及需要驅(qū)動放大器進(jìn)行管理的開關(guān)噪聲或"反沖"電荷注入。
放大電路 Bode plot 可以快速估算電路穩(wěn)定性。Bode plot 工具可以近似地描述放大器的開環(huán)和系統(tǒng)閉環(huán)增益?zhèn)鬟f函數(shù)的大?。▓D 3)。
y 軸量化了放大器電路的開環(huán)增益 (AOL) 和閉環(huán)增益 (ACL),其中放大器的 AOL 曲線從 130 分貝 (dB) 開始,閉環(huán)增益 ACL 等于 0dB。沿 X 軸的單位以對數(shù)形式量化了從 100 赫茲 (Hz) 到 1 千兆赫茲 (GHz) 的開環(huán)和閉環(huán)增益頻率。
在圖 3 中,放大器在大約 220Hz (fO) 時(shí)的直流開環(huán)增益以 -20dB/十倍頻程的速度從 130dB 下降。隨著頻率的增加,這種衰減在持續(xù)并在大約 180 兆赫茲 (MHz) 時(shí)跨過 0dB。由于這條曲線表示單極系統(tǒng),所以分頻器頻率 fU 等于單位增益穩(wěn)定放大器的增益帶寬乘積 (GBWP)。該圖代表一個(gè)穩(wěn)定的系統(tǒng),因?yàn)?AOL 和 ACL 的截止率是 20dB/十倍頻程。
加入 Rext 和 Cext 以及 SAR ADC 后,通過創(chuàng)建系統(tǒng)零點(diǎn)和極點(diǎn)來修改放大器電路(圖 4)。該系統(tǒng)包括一個(gè) 16 位、每秒 1 兆次 (MSPS) 的 AD7915 差分 PulSAR ADC 和一個(gè) 180 MHz、軌至軌輸入/輸出 ADA4807-1 放大器,該器件由 Analog Devices 提供。由于存在 30 皮法 (pF)(典型值)的 ADC 輸入電容負(fù)載,放大器和 ADC 的組合需要 Rext。該電路還需要 Cext 作為充電筒,在 ADC 輸入端提供足夠的電荷,以準(zhǔn)確匹配輸入電壓。
如圖 4 所示,由于電路在初始采集時(shí) ADC 的電容負(fù)載和 ADC 的開關(guān)電荷注入,有可能發(fā)生振蕩。Rext/Cext 放大器輸出元件所產(chǎn)生的額外極點(diǎn)和零點(diǎn)保證了系統(tǒng)穩(wěn)定,所以開環(huán)和閉環(huán)增益曲線交點(diǎn)大于 20dB/十倍頻程,使相位裕度小于 45°。這種配置與 fP2 和 fZ2 一起構(gòu)成一個(gè)不穩(wěn)定電路。
為避免不穩(wěn)定,在評估電路中帶有 Rext 和 Cext 的放大器開環(huán)增益曲線時(shí),設(shè)計(jì)人員需要考慮放大器的開環(huán)輸出電阻 RO 的影響。阻值為 50 歐姆 (W) 的RO 與 Rext、Cext 的組合通過引入一個(gè)極點(diǎn)(fP,公式 1)和一個(gè)零點(diǎn)(fZ,公式 2)來修正開環(huán)響應(yīng)曲線。RO、Rext 和 Cext 的值決定了 fP 的轉(zhuǎn)折頻率。Rext 和 Cext 的值決定了零轉(zhuǎn)折頻率 fZ。
fP 和 fZ 的計(jì)算結(jié)果是:
fP1 = 842 kHz
fZ1 = 2.95 MHz
其中:RO = 50 W
Rext = 20 W
Cext = 2.7 納法拉 (nF)
fP2 = 22.7 MHz
fZ2 = 79.5 MHz
其中:RO = 50 W
Rext = 20 W
Cext = 0.1 nF
上述 fP1 和 fZ1 的值使 AD7915 和 ADA4807-1 成為一個(gè)穩(wěn)定的系統(tǒng)。
驅(qū)動 Easy Drive AD4021 SAR ADC
AD7915 的替代產(chǎn)品是 AD4021 20 位 1 MSPS Easy Drive SAR 轉(zhuǎn)換器。AD4021 器件系列將輸入反沖和輸入電流顯著降低至 0.5 微安 (μA)/MSPS。Easy Drive 器件的特點(diǎn)是能降低功耗和信號鏈復(fù)雜性。
AD4021 的模擬輸入端采用了能夠降低典型開關(guān)式電容 SAR 輸入非線性電荷反沖的電路。因?yàn)闇p少了反沖并延長了采集階段,因此可以使用較低帶寬、較低功率的驅(qū)動放大器(圖 5)。
減少反沖并延長采集時(shí)間,也使得輸入電阻電容 (RC) 濾波器中的 Rext 電阻值增大,Cext 電容相應(yīng)減小。這種較小的 Cext 放大器負(fù)載組合提高了穩(wěn)定性,降低了功耗。
使用單路 5 伏電源的 AD4021 的推薦連接圖似乎具有類似電路圖。但對放大器的要求降低了,Rext/Cext(R 和 C)的值更?。▓D 6)。
圖 6 中,基于 SAR 的 AD4021 也采用了電荷再分配采樣 DAC。ADC 有一個(gè)板載轉(zhuǎn)換時(shí)鐘和串行時(shí)鐘。因此,轉(zhuǎn)換過程不需要同步時(shí)鐘 (SCK) 輸入。這種時(shí)鐘配置可以延長采集時(shí)間,通過為輸入信號提供更長的時(shí)間使其建立至最終值,從而提高精度。
AD7915 和 AD4021 的驅(qū)動放大器主要考慮的是噪聲,因?yàn)榉糯笃?Rext/Cext 組合必須從滿量程階躍到 16 位水平 (0.0015%, 15ppm) 的 AD7915,以及 20 位水平 (0.00001%, 1ppm) 的 AD4021。
為了保持 AD7915 和 AD4021 的信噪比( SNR) 性能,驅(qū)動放大器的噪聲必須小于 ADC 噪聲的三分之一。AD4021 的噪聲為 60 微伏有效值 (mVrms),這就要求放大器/Rext/Cext 組合的噪聲小于 20mVrms。AD4021 的噪聲為 31.5 mVrms,這就要求放大器/Rext/Cext 組合的噪聲小于10.5 mVrms。
Analog Devices 的精密 ADC 驅(qū)動器工具可幫助設(shè)計(jì)人員快速計(jì)算出正確的 Rext 和 Cext 值。通過選定的驅(qū)動器和 ADC,該工具可以模擬電路的建立時(shí)間、噪聲和失真行為。
結(jié)語
SAR ADC 將繼續(xù)在超高速數(shù)據(jù)采集、工業(yè)控制和儀器儀表應(yīng)用中占據(jù)主導(dǎo)地位。然而,我們需要考慮這類器件的外部輸入電路——驅(qū)動放大器和輸入濾波器,以適應(yīng)潛在的開關(guān)電荷注入和放大器穩(wěn)定性問題。
大多數(shù) SAR 轉(zhuǎn)換器(如 AD7916 和 AD4021)精確控制輸入信號的解決方案都依賴運(yùn)放驅(qū)動器,如本示例中的 ADA4807-1。如圖所示,這類器件在適當(dāng)?shù)妮敵鲭娮韬碗娙葜档闹С窒滦纬梢粋€(gè)堅(jiān)實(shí)的基礎(chǔ),然后在此基礎(chǔ)上建立一個(gè)高精度、穩(wěn)健、高分辨率、16 位或 20 位 SAR 轉(zhuǎn)換器系統(tǒng)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器