- 機(jī)械開關(guān)閉合時(shí)總會(huì)出現(xiàn)幾毫秒的觸點(diǎn)抖動(dòng)過程。旋轉(zhuǎn)式多觸點(diǎn)開關(guān)似乎可以避免類似情況發(fā)生,但由于多次大電流閉合所形成的電火花會(huì)腐蝕觸點(diǎn),因此開關(guān)的重復(fù)性令人懷疑。
- 大電流繼電器觸點(diǎn)閉合時(shí)也會(huì)產(chǎn)生抖動(dòng),并且會(huì)表現(xiàn)出不同的閉合電阻。
- 實(shí)驗(yàn)證明,可控硅整流器的電流上升速率不盡人意。
- 大電流汞位移繼電器是人們寄予厚望的最佳方法,但結(jié)果并不令人滿意。一個(gè)標(biāo)稱阻抗4mΩ的60A、600V汞繼電器在剛開始接觸時(shí)阻抗為40mΩ,隨著電流脈沖流過15µs后會(huì)輕松降至4mΩ。
- 手工短路操作可提供一種隨意的、斷續(xù)并且非重復(fù)性的短接方式,具有較強(qiáng)的隨機(jī)性!可以獲得非常陡的電流波前沿。綜上所述,盡管觸點(diǎn)腐蝕對(duì)每次閉合的重復(fù)性有影響,但這種方法仍是最有效(和最經(jīng)濟(jì))的。
一種能降低熱插拔控制電路電流的方案
發(fā)布時(shí)間:2017-01-20 責(zé)任編輯:wenwei
【導(dǎo)讀】當(dāng)熱插拔控制電路的輸出發(fā)生短路時(shí),會(huì)觸發(fā)內(nèi)部斷路器功能并斷開電路。但在內(nèi)部斷路器做出反應(yīng)之前,剛開始的短路電流可能達(dá)到數(shù)百安培。通常熱插拔控制器斷路器的延遲時(shí)間是200ns至400ns,再加上柵極下拉電流有限,柵極關(guān)閉時(shí)間可能需要10µs至50µs。在此期間,會(huì)產(chǎn)生較大的短路電流。
本應(yīng)用筆記給出了一個(gè)簡(jiǎn)單的外部電路,它能將初始電流尖峰降至最小并在200ns至500ns內(nèi)隔離短路故障。
典型熱插拔電路
我們來考察采用MAX4272構(gòu)建的+12V、6A典型熱插拔控制電路(圖1)。根據(jù)MAX4272的規(guī)格指標(biāo),可知其包含觸發(fā)門限分別為50mV和200mV的低速和快速比較器(整個(gè)溫度范圍內(nèi),容限分別為43.5mV至56mV和180mV至220mV)。觸發(fā)電流大小通常為工作電流的1.5至2.0倍,選擇RSENSE = 5mΩ。RSENSE允許有5%的容限,過載條件下低速比較器的觸發(fā)電流范圍是8.28A至11.76A;發(fā)生短路時(shí),快速比較器的觸發(fā)電流范圍是34A至46.2A。
圖1. 典型的熱插拔控制電路
低速比較器的最低觸發(fā)門限比正常工作電流高38%,快速比較器的短路觸發(fā)門限是工作電流的6至8倍。
快速比較器的延遲時(shí)間為350ns,這一時(shí)段的短路電流尖峰僅受限于電路阻抗。此后電流緩慢下降,直至完全隔離短路故障,3mA柵極下拉電流限制了MOSFET M1柵極電容(3nF至4nF)的放電速率。短路電流在15µs至40µs內(nèi)緩慢減小,與此同時(shí),柵極電壓從19V被拉到接近地電位。
峰值短路電流
最初350ns內(nèi)的峰值電流由以下因素決定:
(a) 電源ESR,(b) 短路狀態(tài),(c) RSENSE阻值,(d) M1的RDS(ON),(e) M1的ID(ON)。
以上參數(shù)均采用最接近實(shí)際情況的取值,可以計(jì)算出短路時(shí)電路的總阻抗:
(電源ESR ≈ 4mΩ) + (短路環(huán)節(jié) ≈ 3mΩ) + (RSENSE = 5mΩ) + (RD(ON) ≈ 4mΩ) ≈ 16mΩ。
這時(shí),短暫的峰值電流為:ISC ≈ 750A,并取決于電源的儲(chǔ)能電容(帶2200µF電容的低ESR背板以750A電流放電時(shí),1µs內(nèi)電壓僅降低340mV)。這種情況下,實(shí)際的峰值ISC會(huì)由M1的ID(ON)限制到400A左右。
ID(ON)取決于VGS,因此有必要檢查電路,以確定這一時(shí)段的柵-源電壓。MAX4272包含一個(gè)內(nèi)部電荷泵,可使正常工作時(shí)的柵極電壓高出VIN約7V。因而MOS管導(dǎo)通時(shí)VGS = 7V。
短路的第二個(gè)影響是它實(shí)際上增加了VGS。短路在M1的漏-源之間引入了一個(gè)電壓階躍 -等于總輸入電壓的一部分。由于M1的RD(ON)約為預(yù)估的短路總阻抗的1/3,此時(shí)施加的VDS約為12V階躍電壓的1/3。由漏-柵電容cdg和柵-源電容cgs組成的分壓器會(huì)將該階躍電壓的一部分轉(zhuǎn)移到柵極。經(jīng)過適當(dāng)計(jì)算,可知引入的額外ΔVGS為300mV至500mV,但短路期間進(jìn)行的測(cè)試表明該值可高達(dá)ΔVGS = +3V。
至此可以清楚地看出,牢固可靠的短路會(huì)在幾微秒至幾十微秒內(nèi)產(chǎn)生數(shù)百安培的電流。
設(shè)計(jì)者可能希望將ISC峰值限制在50A,持續(xù)時(shí)間小于1µs,但如果不增加更快速的比較器和柵極下拉電路的話,這一要求是不切實(shí)際的。然而,可以考慮對(duì)電路做一些簡(jiǎn)單的修改。
1.在內(nèi)部快速比較器最初的350ns響應(yīng)時(shí)間內(nèi),電流會(huì)由ID(ON)限制在幾百安以內(nèi),此時(shí)可以通過增加一個(gè)簡(jiǎn)單的外部電路來加快柵極放電,從而將短路持續(xù)時(shí)間限制≤ ½µs。
2.或者用一個(gè)稍復(fù)雜的外部電路將Isc峰值限制在100A范圍內(nèi),并且持續(xù)時(shí)間≤ 200ns。
快速柵極下拉電路限制大短路電流的持續(xù)時(shí)間
只需增加一個(gè)PNP型達(dá)林頓管Q1,即可極大地縮短大短路電流的持續(xù)時(shí)間,如圖2所示。二極管D1允許柵極在導(dǎo)通狀態(tài)下正常充電,而關(guān)斷時(shí)控制器的3mA柵極放電電流改為直接驅(qū)動(dòng)Q1的基極。然后Q1在約100ns時(shí)間內(nèi)迅速完成柵極放電。這樣,發(fā)生短路時(shí)的大電流持續(xù)時(shí)間大為縮短,僅略大于快速比較器350ns的延遲時(shí)間。
圖2. 具有快速柵極下拉的熱插拔控制器
快速限流電路
借助圖3所示的電路,可以將短路電流限制在約100A以下,持續(xù)時(shí)間小于200ns。當(dāng)RSENSE兩端的電壓差達(dá)到約600mV時(shí),PNP型晶體管Q1a將觸發(fā)并驅(qū)動(dòng)NPN型晶體管Q1b,從而使M1的柵極電容快速放電。
圖3. 具有快速短路峰值電流限制功能的熱插拔控制器
M1柵極和源極之間的C2可進(jìn)一步減小發(fā)生短路時(shí)作用在柵極上的正向瞬態(tài)階躍電壓,該電容的取值范圍為10nF至100nF。
齊納二極管D1用來將VGS限制到7V (MAX4272提供該電壓)以下的某個(gè)值。
雖然齊納二極管D1在偏置電流為5mA時(shí)的額定值為5.1V,但在本電路中,MAX4272僅能輸出100µA的柵極充電電流(齊納二極管偏置電流),因此D1會(huì)將VGS限制在3.4V左右。受到限制的VGS可降低ID(ON),當(dāng)然RD(ON)會(huì)增大一些。根據(jù)MOS管的數(shù)據(jù)資料可知:VGS為3.4V時(shí)RD(ON)為5mΩ,VGS為7V時(shí)RD(ON)為3mΩ。這樣可以更快地關(guān)斷M1。
D1和C2也可以用在圖1和圖2的電路中,以降低短路時(shí)的ID(ON)。
測(cè)試方法-造成短路
沒有什么比制造短路更簡(jiǎn)單了。
但要產(chǎn)生牢固可靠并且重復(fù)性較好的短路情況非常富有挑戰(zhàn)性。本測(cè)試對(duì)以下幾種制造短路的方法進(jìn)行了評(píng)估。
最可行的實(shí)驗(yàn)室方法是采用多個(gè)大輸出CMOS施密特線路驅(qū)動(dòng)器來驅(qū)動(dòng)多個(gè)并連、低RD(ON)、NMOS晶體管。由于時(shí)間和資源所限,這一方案未被采納。
如果在實(shí)驗(yàn)室里通過機(jī)械手段,來始終如一地產(chǎn)生帶陡峭電流波前的真正低阻短路故障極為困難。電路工作時(shí)幾乎肯定會(huì)經(jīng)歷這種意外短路故障。
通常人為制造短路將產(chǎn)生如圖4所示的電容放電電流和電壓波形。上方曲線是選擇5V/div檔位時(shí)記錄的短路輸出電壓, 可以看出大部分時(shí)間(25µs/div)內(nèi)電容放電不足一半。下方曲線是選擇25A/div檔位時(shí)記錄的短路電流,可清楚地顯示出接觸是斷斷續(xù)續(xù)的。
圖4. 不規(guī)則的機(jī)械短路信號(hào)波形
構(gòu)建ESR低于5mΩ的電源也不容易。盡管如此,仍竭盡全力構(gòu)建了一個(gè)低ESR (4–5mΩ)的電壓源,經(jīng)細(xì)心測(cè)量,可知在100A短路情況下電壓下降440mV。該電壓源的輸入端直接并聯(lián)了1個(gè)5500µF的計(jì)算機(jī)等級(jí)電解電容、1個(gè)3.3µF多層陶瓷電容以及6個(gè)100µF專業(yè)聚合物鋁電解電容,并由1個(gè)10A電源驅(qū)動(dòng)。
短路電流波形
圖1所示電路(未作改進(jìn))的短路電流波形如圖5所示。由于測(cè)量的是電流檢測(cè)電阻RS兩端的電壓,并且示波器地與測(cè)試電路的+12V輸入端相連,因此信號(hào)波形看上去是反相的。RS為6mΩ,電壓檔位選擇1V/div,峰值電壓為2400mV或400A。電流波前并不像接觸良好時(shí)一樣陡峭。
圖5. 電路未作改動(dòng)時(shí)具有400A峰值短路電流
觀察圖6所示的電壓信號(hào)波形有助于加深理解,圖中給出了短路時(shí)的輸出電壓、M1柵極電壓波形以及RS兩端的電壓。所有電壓均以+12V輸入為參考。
圖6. 電路未作改動(dòng)時(shí)的短路電壓和電流波形
VOUT - VIN信號(hào)波形顯示,短路期間VOUT下降了7V,這表明短路阻抗只略低于總電路阻抗的½。更低阻抗的短路故障會(huì)產(chǎn)生高于400A的峰值電流。信號(hào)波形還表明在開始的300ns內(nèi)短路不是完全牢固可靠;這導(dǎo)致了VSENSE信號(hào)波形緩慢下落。
由VGATE波形可以看出,最初VGS = 7V,由于VOUT下降,1µs后增至10V左右。5µs后VGS僅降至9V,20µs時(shí)降至6V,33µs時(shí)降至4V。由于放電電流僅為3mA,因此柵極放電緩慢。這樣一來,發(fā)生短路故障后27µs內(nèi)短路電流仍為100A。
圖2的快速柵極下拉電路不大會(huì)降低最初的短路電流,但PNP型達(dá)林頓管下拉會(huì)迅速終止電流信號(hào)波形。這種配置下的短路電流信號(hào)波形如圖7所示,峰值電流仍為2400mV或400A,但快速比較器在370ns觸發(fā)后,電流可在50ns內(nèi)阻斷。還應(yīng)注意,短路電流信號(hào)波形是非常陡峭的,表明機(jī)械短路非??煽?。
圖7. 快速下拉電路的短路電流波形
當(dāng)電路電容給輸入電容充電時(shí)電源電流發(fā)生反向,并導(dǎo)致+12V輸入端出現(xiàn)一個(gè)小幅正向過沖。
圖3的快速短路峰值電流限制電路在限制峰值電流以及短路電流持續(xù)時(shí)間方面均有效。如圖8所示,RS (6mΩ)兩端的電壓峰值為600mV,對(duì)應(yīng)100A峰值電流。短路電流阻斷極其迅速,電流脈沖在200ns內(nèi)完全終止。
圖8. 改進(jìn)后熱插拔控制器電路的短路電流脈沖
利用該技術(shù)可將背板電源干擾降至最低,如圖9所示,會(huì)在測(cè)試方法一節(jié)中提到的+12V電源上產(chǎn)生小于±500mV的峰值電壓干擾。
圖9. 圖3電路發(fā)生短路時(shí)引起的背板干擾
再次看到陡峭的電流波前,表明這是一個(gè)質(zhì)量非常高的短路狀態(tài)。遺憾的是,很難復(fù)現(xiàn)這樣的陡峭電流波形。
那么發(fā)生了什么?
PNP-NPN檢測(cè)/下拉電路終止短路電流(然后解除控制)如此迅速,以至于MAX4272快速比較器沒有足夠的時(shí)間觸發(fā)(響應(yīng)時(shí)間 = 350ns)。圖10顯示了500µs時(shí)段的VGS信號(hào)波形(短路開始后450µs)。由于100µA的柵極充電電流仍然存在,已經(jīng)被放電的柵極電壓又開始上升。大約130µs后,柵極電壓被充分充電(3V),VOUT升至大約1V,這時(shí)短路電流再次開始流動(dòng)。重新充電的過程很慢,足以使快速比較器在電流為33A時(shí)觸發(fā)(200mV/6mΩ),IC將執(zhí)行關(guān)斷和閉鎖操作。
圖10. 短路情況下VGS的時(shí)間壓縮視圖
結(jié)論
當(dāng)熱插拔控制電路發(fā)生短路故障時(shí),本文討論的兩種電路都可以通過限制功耗來保護(hù)背板電源。圖2所示的簡(jiǎn)單電路能夠?qū)⒍搪冯娏鞒掷m(xù)時(shí)間縮短到500ns以內(nèi);圖3電路稍微復(fù)雜些,但可將短路電流限制在100A以內(nèi),并且短路電流脈寬小于200ns。
以上任何一種技術(shù)都適用于大多數(shù)熱插拔控制電路。
取決于電源內(nèi)阻、短路阻抗以及短路故障本身的特性和故障發(fā)生時(shí)間,個(gè)別測(cè)試結(jié)果會(huì)存在一定差異。
本文來源于Maxim。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽(yáng)能
太陽(yáng)能電池
泰科源
鉭電容
碳膜電位器