你的位置:首頁 > 互連技術 > 正文

功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法

發(fā)布時間:2024-11-25 責任編輯:lina

【導讀】功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。


前言


功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。


功率器件熱設計基礎系列文章會聯(lián)系實際,比較系統(tǒng)地講解熱設計基礎知識,相關標準和工程測量方法。


功率半導體模塊殼溫和散熱器溫度


功率模塊的散熱通路由芯片、DCB、銅基板、散熱器和焊接層、導熱脂層串聯(lián)構成的。各層都有相應的熱阻,這些熱阻是串聯(lián)的,總熱阻等于各熱阻之和,這是因為熱量在傳遞過程中,需要依次克服每一個熱阻,所以總熱阻就是各熱阻的累積。


功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


各芯片在導熱通路上有多個導熱層,在IEC 60747-15 Discrete semiconductor devices–15_Isolated power semiconductor devices按照設計的具體需要定義了殼溫Tc和散熱器溫度Th,以及測試方法。


在損耗和熱仿真時,基本的仿真總是針對單個IGBT或單個二極管,所以需要知道的殼溫是指芯片正下方的溫度,散熱器溫度也是指芯片正下方的溫度。英飛凌數(shù)據(jù)手冊就是這樣定義的。


按照IEC 60747-15,具體測試方法為:


Tc:殼溫是通過功率開關(芯片)下面穿透散熱器以及熱界面材料的小孔測量到的管殼溫度Tc。

Ts(Th):散熱器溫度是通過止于散熱器表面下方2mm±1mm(型式試驗特征,應予規(guī)定)的規(guī)定的盲孔測量。

Tsx:散熱器溫度也可以取自距功率開關(芯片)最近的最熱可觸及點,但這殼溫與英飛凌數(shù)據(jù)手冊上的定義和測量方法不一致,這樣的管殼溫度可以作為設計也測量參考,需要的化,可以通過測量定標,建立與結溫的函數(shù)關系。



功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


為了測量Tc打了穿透散熱器以及熱界面材料的小孔,插入傳感器會影響模塊殼到散熱器的熱傳遞,好在有基板的模塊,熱會在基板上橫向傳導擴散,孔和探頭對測量誤差可以控制在5%水平。


注:在IEC 60747-15中的Rth(j-s),Rth(c-s)與本文中Rthjh和RthCH一致。


功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


對于沒有基板的模塊,如英飛凌的Easy系列,DCB下表面的銅層很薄,熱的橫向傳導非常有限,熱傳遞的有效面積與芯片尺寸相當,打孔測殼溫對模塊散熱影響就比較大,測量改變了工況,這樣的測量不宜提倡。


功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


因此,對于這種沒有基板的模塊,熱阻抗的參考溫度為Ts(Th)而不再用TC,就是說直接定義RthJH,在數(shù)據(jù)手冊里找不到RthJC和RthCH。


功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


模塊殼溫的工程測量方法:


在芯片底部測殼溫是型式試驗方法,用于功率平臺開發(fā),而實際應用中,功率模塊會自帶NTC,負溫度系數(shù)熱敏電阻作為測溫元件。


NTC安裝在硅芯片的附近,以得到一個比較緊密的熱耦合。根據(jù)模塊的不同,NTC或者與硅芯片安裝在同一塊DCB上,或者安裝在單獨的基片上。


功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


NTC測量值不是數(shù)據(jù)手冊中定義熱阻的殼溫,需要按照經(jīng)驗進行修正,或進行散熱定標。


熱量可能傳導路徑的等效熱路:


功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


經(jīng)驗法:


NTC可用于穩(wěn)態(tài)過熱保護,其時間常數(shù)大約是2秒。在數(shù)據(jù)手冊上的瞬態(tài)熱阻曲線上可以讀到芯片的熱時間常數(shù),0.2秒左右,但是整個散熱系統(tǒng)的時間常數(shù)卻非常大,譬如在20秒左右,因此NTC可以檢測較緩慢溫度變化和緩慢過載情況,對短時結溫過熱保護是無能為力的,更不能用于短路保護。


我們可以有兩個簡單的說法:


1.由于連接芯片結到NTC的路徑RthJNTC上有溫度差,熱敏電阻NTC的溫度TNTC會比結溫TJ來得低。


2.但NTC的溫度會比散熱器上測量的溫度來得高。由經(jīng)驗可知,對于電力電子設備,散熱器的溫度和NTC的溫度的差值約等于10K的溫度左右。


功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


這方法僅用于估算,建議用下面的定標法和熱仿真得到更精確的數(shù)值。


定標法:


對于結構設計完成的功率系統(tǒng),我們可以測得芯片表面溫度和在特定的散熱條件下的Tvj~TNTC曲線,這曲線可以很好幫助你利用NTC在穩(wěn)態(tài)條件下來監(jiān)測芯片溫度。具體方法參考《論文|如何通過IGBT模塊內(nèi)置的NTC電阻測量芯片結溫》。


下圖就是摘自上述微信文章,被測器件是PrimePACK?模塊FF1000R17IE4 1000A/1700V,采用可調風速的風冷散熱器。


芯片的溫度用紅外熱成像儀測量,數(shù)據(jù)手冊所定義的殼溫用熱電偶在芯片下方測量。NTC電阻值通過數(shù)據(jù)采集器記錄,并且根據(jù)IGBT模塊數(shù)據(jù)手冊中的NTC阻值-溫度曲線將電阻值轉換成對應的溫度值。



功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法


單管管腳溫度測量:


功率半導體單管,例如TO-247-3封裝,其中心管腳是框架的一部分,在系統(tǒng)設計中往往測中心管腳溫度作為殼溫的參考,為此JEDEC即固態(tài)技術協(xié)會在1973年就發(fā)布了一份出版物《測量晶體管引線溫度的推薦做法》,目前有效版本是2004年的JEP84A 。



3-9.jpg


JEP84A推薦做法包括:


1.建議的引線溫度測量點為距離外殼1.5毫米處或制造商指定的位置,如圖綠點位置;

2.熱電偶測量時,必須注意熱電偶與引線表面的牢固接觸,建議采用焊接方式;

3.熱電偶球的橫截面積不得大于引線橫截面積的二分之一,由于圖示封裝b3=2.87mm,所以熱電偶不要超過1.4mm。

文章來源:英飛凌工業(yè)半導體


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。


推薦閱讀:

借助完全可互操作且符合 EMC 標準的 3.3V CAN 收發(fā)器簡化汽車接口設計

創(chuàng)實技術electronica 2024首秀:加速國內(nèi)分銷商海外拓展之路

ADALM2000實驗:變壓器耦合放大器

功率器件熱設計基礎(四)——功率半導體芯片溫度和測試方法

采用系統(tǒng)級模塊方法簡化精密阻抗分析儀的設計

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉