【導讀】近日,在“中國電信戰(zhàn)新共鏈行動大會暨第三屆科技節(jié)”之“面向云網(wǎng)融合的下一代光網(wǎng)絡新技術論壇”上,中國電信集團科技委主任韋樂平發(fā)表主題演講。
圍繞T比特時代正在開啟,IP層和光層融合技術的發(fā)展趨勢,下一代新型光纖的發(fā)展與思考,光接入和駐地網(wǎng)技術的最新發(fā)展趨勢,光器件的創(chuàng)新是關鍵,ChatGPT開創(chuàng)人工智能新時代,系統(tǒng)闡述了光通信發(fā)展的新趨勢思考。
T比特時代正在開啟
韋樂平表示,T比特DSP的商用實現(xiàn)了群體性突破,T比特光模塊商用化可期,T比特級傳輸系統(tǒng)現(xiàn)場實驗逐步開展,標志著T比特時代正在到來。
DSP方面,Acacia、NEL、Nokia、Infinera、Marvell的1.2Tbps DSP,預計2023年-2024年均可商用,Ciena的1.6Tbps DSP預計2024年可商用。光模塊方面,Terabit BiDi MSA聯(lián)盟同時發(fā)布基于100G通道和OM4多模光纖的800G和1.6T的數(shù)通產(chǎn)品,Coherent、旭創(chuàng)等發(fā)布了相關產(chǎn)品。傳輸網(wǎng)方面,國內(nèi)外均有運營商開展了現(xiàn)網(wǎng)試驗。
相干光通信的在網(wǎng)位置和適用速率一路下沉,占據(jù)80公里/100G速率以上的所有應用場景;主導40公里/400G速率,10公里/800G速率,2公里/1.6T速率場景;低功率相干光已邁向10公里/100G速率和40公里/100G速率場景。
相干光通信的技術進展包括DSP突破,集成化進展,低成本措施,新材料出現(xiàn)(如薄膜鈮酸鋰),封裝架構創(chuàng)新(如光電共封)等。
目前,相干光通信已經(jīng)成功應用于海纜、長途網(wǎng)、城域網(wǎng)、DCI,正滲透網(wǎng)絡邊緣、匯聚、5G回傳、企事業(yè)網(wǎng),試圖突破5G前傳、DCN、VHSP。
對于干線400G的主流方案,傳輸距離比容量更重要,因此QPSK(C6T)、QPSK(C6T+L6T)更適用干線網(wǎng),對于16QAM-PS(C6T+L6T)更適用于區(qū)域網(wǎng)。
對于基于QPSK的80波400G干線系統(tǒng)的技術進展,400G相干光模塊方面,分立C6T和L6T激光器可用;低噪聲光纖放大器,分立C6T和L6T可用,長波長NF需改進;波長交換WSS,分立C6T和L6T均可用,C6T+L6T集成2024年可用;光系統(tǒng),解決SRS,維系波道功率動態(tài)均衡,基本可行。
商用進展方面,韋樂平介紹,中國電信目前干線最大鏈路截面容量121T,用400G擴容可以節(jié)約15%—20%的寶貴光纖資源和大量轉發(fā)器,100G資源2026年起逐步達到使用壽命。目前來看,2024年將實現(xiàn)試商用和商用,2025年實現(xiàn)規(guī)模商用,2026年大規(guī)模商用。
IP層和光層物理融合突破障礙
韋樂平介紹,IP層和光層融合的好處在于,消除了大量背靠背灰光和獨立轉發(fā)器,降低了功耗、尺寸、成本。統(tǒng)一了IP層和光層的管控和監(jiān)視,實現(xiàn)了光層開放。具備了跨層全局視野,可望更有效地利用兩層資源,規(guī)避無效恢復和沖突。簡化了網(wǎng)絡架構,易于維護,更快適應外部變化。
IP層和光層物理融合的障礙在于,目前路由器和光線路系統(tǒng)的對接靠后者的大量獨立光轉發(fā)器實現(xiàn),隨著速率的持續(xù)提高,這種分離方式的成本也越來越高。十幾年前的集成努力由于DSP和光模塊尺寸太大,導致犧牲路由器面板的端口容量,得不償失,運營商不得不繼續(xù)沿用分離的老辦法。
隨著硅、硅光和DSP技術的進展,目前能將DSP和硅光模塊嵌入路由器標準端口(OSFP-DD),形成適用路由器和光線路系統(tǒng)的400G通用DCO光模塊,實現(xiàn)尺寸、功耗、性能、成本和互操作突破。適用于多種網(wǎng)絡邊緣接入技術(企業(yè)應用、5G回傳和中傳、OLT、CMTS等)的低成本100ZR通用光模塊(QSFP28)也即將推出。
韋樂平表示,目前IP層和光層融合技術主要應用于城域網(wǎng),干線場景還有待突破。目前的主要挑戰(zhàn)是多廠家環(huán)境跨層控制的標準化、互操作、利益格局的影響。另外,運營商面臨自主開發(fā)私有管控規(guī)范的自研能力、時效、運維的挑戰(zhàn)。
G.654E將是未來干線主用光纖
韋樂平表示,G.654E光纖將成為未來干線網(wǎng)的主用光纖。測試數(shù)據(jù)表明,對于速率將升級為400G的干線,G.654光纖可望提升距離60%—80%。
對于單纖空分復用,多芯光纖在兼容現(xiàn)有125μm包層前提下,僅能容納3-4芯,擴容3-4倍,但包括制造工藝、檢測、維護等產(chǎn)業(yè)鏈幾乎需要重新設計和產(chǎn)業(yè)化。少模光纖靠大芯徑容納3—5個低階模,制造容易,但面臨高階模高衰減、長距離傳輸模式耦合干擾以及復用/去復用器挑戰(zhàn)。
另外,高密度大芯數(shù)光纜(多軌系統(tǒng),一纜多纖)最簡單易行,擴容潛力最大,但需要集成化系統(tǒng)的配合。
值得一提的是,韋樂平還看好空心光纖(HCF)。空芯光纖HCF)絕大部分信號功率走空氣通道,時延低33%;非線性至少低3-4倍,入纖功率高,傳輸距離長,容量大,可望突破非線性香農(nóng)容量極限。
同時,空心光纖潛在光纖損耗可望低于0.1dB/km、譜寬大(約40THz窗口,遠大于常規(guī)光纖)、模場直徑大(約20μm,高達40μm時仍無明顯彎曲損耗增加)。
不過空芯光纖也面臨著多項成本、多項標準化、仍涉及產(chǎn)業(yè)鏈重新設計和產(chǎn)業(yè)化等挑戰(zhàn)。
對于空心光纖的應用場景,韋樂平介紹在特定低時延應用(超算、DCI、海纜等場景),以及非通信應用(傳感、高功率傳遞、特殊光源)等都有廣闊的應用空間。
FTTR-H目標1億中高端家庭
光接入和駐地網(wǎng)的新發(fā)展趨勢方面,接入帶寬持續(xù)提升,目前全國寬帶端口11.18億,光寬占96.3%,千兆端口數(shù)達2144萬,下一步50G PON,短期用于政企客戶2B應用,長遠沖擊100G/200G PON。
在政策支持,競爭驅動,以及技術和生態(tài)基本成熟的驅動下,F(xiàn)TTR發(fā)展迅猛。韋樂平表示,初期將聚焦FTTR-H,也就是家庭場景,預計今年FTTR-H的用戶超過1000萬,長遠目標是1億中高端家庭,約500億元市場規(guī)模。
目前FTTR還存在一些挑戰(zhàn),F(xiàn)TTR-H方面主從設備希望解耦,新業(yè)務應用不足;FTTR-B還有待培育。
網(wǎng)絡的未來寄希望于光芯片創(chuàng)新
目前,全球運營商都面臨著量收剪刀差的局面。韋樂平指出,降低量收剪刀差的關鍵是大幅降低網(wǎng)絡成本,光通信成為降價最慢的領域,其中光器件是瓶頸的瓶頸,光芯片更是瓶頸的立方。原因在于,摩爾定律不適用以手工為主的光通信技術。
傳輸系統(tǒng)方面,一個80波400G QPSK碼型的C6T+L6T波段的光傳輸系統(tǒng),光器件成本大約占81%(含oDSP),800G和1.6T只會更高。
核心路由器方面,400G核心路由器,光器件成本占15%,隨著容量提升,背板芯片互連、板卡互連都將光化,光域分量將繼續(xù)增加。
光接入方面,隨著技術進步和大規(guī)模集采,10G PON光模塊成本占比下降至35%。未來50G PON、WDM-PON光模塊成本占比會更高。
交換機方面,數(shù)據(jù)中心交換機的光模塊成本增速很快,在400Gb/s速率,交換機的光模塊成本已經(jīng)超過交換機本身,高達50%。
光系統(tǒng)對于光器件的總體要求是:高速率、高集成、低功耗、低成本。韋樂平認為,光子集成(PIC)是主要突破方向,其中磷化銦(InP)是唯一的大規(guī)模單片集成技術,硅光(SiP)是最具潛力的突破方向,可以將電域的CMOS的投資、設施、經(jīng)驗和技術用在光域。
另外,基于硅光的光電共封(CPO)是進一步降低功耗、提升能效、提高速率,適應AI大模型算力基礎設施發(fā)展的關鍵器件之一。
韋樂平總結道,網(wǎng)絡的未來寄希望于光器件,特別是光芯片的技術創(chuàng)新。
ChatGPT近中期主要影響DCN
今年人工智能領域最火熱的話題就是ChatGPT。這一類AIGC大模型訓練可能需要在DC內(nèi)為每個訓練POD單獨構建高速數(shù)據(jù)交換網(wǎng)平面。
目前來看主要的技術要求包括高帶寬和低延遲/零丟包。高帶寬方面,服務器內(nèi)GPU間總線帶寬達T比特級,服務器對外僅能提供200G×8的接入能力,是AI集群性能的瓶頸;服務器間組網(wǎng),國外多采用IB,性能好,但技術封閉,國內(nèi)傾向用無損以太網(wǎng)RoCE。
低延遲/零丟包方面,IB時延僅1us,而無損以太網(wǎng)RoCE在5到10us水平,尚需努力。此外,丟包對傳輸效率影響很大,需要近零丟包性能。
韋樂平表示,隨著多模態(tài)視頻到來,帶寬將有數(shù)量級增長,屆時對DCN和DCI的影響需重估,甚至跨群跨云的并行訓練必將到來。
在韋樂平看來,近中期ChatGPT主要影響DCN,對DCI和電信網(wǎng)的影響不大,中長期光交換將是解決集群和跨群跨云訓練性能和功耗的歸宿。
另外在數(shù)據(jù)中心領域有兩個討論比較多創(chuàng)新技術,包括光電共封裝CPO和線性直驅LPO,目前的爭論也很多。
CPO技術的驅動力是隨著傳輸速率提升,信號在銅箔電路板的傳輸損耗快速增加,唯有去掉銅線,才能維系速率的持續(xù)提升和功耗的大幅降低。不過,目前技術尚不成熟,良率不高,維護不方便,標準滯后,實際將復雜性轉移至交換芯片,但其潛力大,最適合200Gb/s SerDes速率以上應用場景,是實現(xiàn)未來高速、高密度、低功耗光互連場景的中長期解決方案。
LPO的驅動力在于去掉光模塊DSP芯片(大約占400G光模塊的一半)可大幅降低功耗,將DSP功能集成到電交換芯片中,依然保持可熱插拔模塊的形態(tài)??梢栽诶^續(xù)利用成熟光模塊供應鏈前提下實現(xiàn)低功耗、低時延目的,但面臨更高速率、更長距離傳輸?shù)木薮筇魬?zhàn),當前的100Gb/s SerDes速率應用是近中期方案。
來源:光通信PRO
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
推薦閱讀:
如何利用電壓輸入到輸出控制自動優(yōu)化LDO穩(wěn)壓器的效率