運(yùn)算放大器的奧秘!(深度長(zhǎng)文)
發(fā)布時(shí)間:2019-11-02 責(zé)任編輯:lina
【導(dǎo)讀】運(yùn)算放大器無處不在,它源于模擬計(jì)算機(jī)時(shí)代,有著悠久的歷史,現(xiàn)在已經(jīng)成為模擬電子領(lǐng)域的標(biāo)志性產(chǎn)品。為什么運(yùn)算放大器如此受歡迎?未來哪些產(chǎn)品可能取代運(yùn)算放大器?
幾年前,ADI公司安排我出差去參加研討會(huì),在斯德哥爾摩和米蘭航段,我的行李丟了。我穿著新買的意大利服裝,沒有幻燈片可展示,尷尬地對(duì)著眾多付費(fèi)觀眾。我向他們保證,等吃完午餐事情就解決了,我決定只給他們講一講運(yùn)算放大器,說說這些器件本身的局限性,讓這些自認(rèn)很資深的用戶對(duì)放大器有更深入的了解。有人給我拿來幾張白紙和一支黑色馬克筆,我們開始探索這片“未知水域”。
一開始我就問:“誰用過運(yùn)算放大器?”差不多每個(gè)人都舉起了手,有人笑得不可名狀,也有人自信地低聲輕笑。然后我接著問:“為什么要用放大器?”大廳里陡然鴉雀無聲,笑容變得隱晦。過了幾秒鐘,有人試著回答:“嗯,有大量運(yùn)算放大器可供選擇。”我承認(rèn),的確是這樣。另一人回答:“它們很便宜!”這也沒錯(cuò),這些運(yùn)算放大器在解決目前的問題時(shí)具有極好的價(jià)值。最后,一些人鼓足勇氣說:“它們?cè)鲆婧芨?”這才是我想要的答案!因?yàn)樵趲缀跛羞\(yùn)算放大器應(yīng)用中,這句話看似不正確。然而這是運(yùn)算放大器的奧秘之一。“現(xiàn)在我們來談?wù)勥@個(gè)問題吧”,我說。
運(yùn)算放大器無處不在,它源于模擬計(jì)算機(jī)時(shí)代,有著悠久的歷史,現(xiàn)在已經(jīng)成為模擬電子領(lǐng)域的標(biāo)志性產(chǎn)品。它的名字是如此平淡,我們很少靜下心來思考它所代表的含義,更不會(huì)想到還有對(duì)應(yīng)的器件“非運(yùn)算放大器”。“非運(yùn)算放大器”從字面意思來看,就是“不運(yùn)算的放大器”??赡苡性S多放大器并不基于“運(yùn)算放大器范式”,而是從單個(gè)晶體管單元開始,在某些特殊領(lǐng)域這些晶體管的性能可能優(yōu)于運(yùn)算放大器,例如適合RF應(yīng)用的LNA,并且包括一些基本的變體,例如電流反饋和有源反饋器件。本文先提出一個(gè)問題:為什么運(yùn)算放大器如此受歡迎?隨后會(huì)探討如果不透徹了解無處不在的運(yùn)算放大器,在應(yīng)用中可能會(huì)引起的一些鮮為人知的問題。后續(xù)文章還會(huì)探討未來幾年可能取代運(yùn)算放大器的產(chǎn)品,包括電流反饋類型,以及替代精密的低失真、寬帶、電壓模式放大的新解決方案。
選擇和理想
如今,系統(tǒng)設(shè)計(jì)師可以在眾多不同種類的所謂“傳統(tǒng)”單片運(yùn)算放大器中進(jìn)行選擇,這類器件具有差分高阻抗輸入,支持小電壓VIN,以及單邊(或者看似如此)低阻抗輸出,由此出現(xiàn)VOUT = AVIN,通常認(rèn)為放大因數(shù)A非常大。我們稱這種放大器為OPA。至于其它類型,例如TZA和AFA,我們將在后續(xù)專欄中介紹。
每個(gè)OPA都有其特殊的性能,例如只提供幾個(gè)飛安偏置電流(通常稱為靜電計(jì)級(jí)運(yùn)算放大器);或者提供超低偏置電壓(即所謂的“儀表級(jí)運(yùn)算放大器”,不要與“儀表放大器”混淆,后者通常指固定增益差分輸入放大器);或者具有極低噪聲,包括不穩(wěn)定和具有煩人的低頻率噪聲(稱為1/f);或者具有寬帶寬,同時(shí)具有高壓擺率時(shí)比較有用(雖然并不太需要);或者支持小功率運(yùn)行,有時(shí)采用非常低的電源電壓;或者能夠?qū)⒋蠊β黍?qū)動(dòng)到負(fù)載。每種OPA都體現(xiàn)了一組強(qiáng)大的優(yōu)化標(biāo)準(zhǔn),當(dāng)然,沒有任何一種設(shè)計(jì)是通用的。
OPA為何應(yīng)用如此廣泛?是否可以將部分原因歸結(jié)為推廣和促銷?它獨(dú)特的優(yōu)勢(shì),近乎萬能的特性,只是一個(gè)神話嗎?顯然不是;但是,它未必始終具備其享譽(yù)的精度。如果你打開大多數(shù)有關(guān)運(yùn)算放大器的教科書,你會(huì)發(fā)現(xiàn)討論總是以所謂的“理想特性”開始,開頭總是這樣的:
無限增益
無限帶寬
無延時(shí)
坦率地說,即使在傳統(tǒng)的應(yīng)用中,我也不知道如何使用這樣的放大器,簡(jiǎn)單說就是因?yàn)檫@些放大器永遠(yuǎn)不會(huì)穩(wěn)定下來——即使OPA中絕對(duì)沒有增益和相位誤差。事實(shí)上,正是基于這一點(diǎn)才獲得高精度。不妨考慮一下實(shí)現(xiàn)單位增益反相放大器的簡(jiǎn)單反饋電路。在實(shí)際的實(shí)施中,從輸出到反相端的物理電阻具有分布電阻和電容,并且具有相當(dāng)復(fù)雜的增益/相位特性。盡管這種特征時(shí)間常數(shù)非常小,通常是皮秒,但如果放大器確實(shí)能在超出關(guān)鍵限值范圍以外的頻率實(shí)現(xiàn)真正的平坦增益,那么它們絕對(duì)不穩(wěn)定。我們可以通過快速仿真來展示這種可能性。當(dāng)然,這是個(gè)學(xué)術(shù)問題。實(shí)際的運(yùn)算放大器在大多數(shù)應(yīng)用中都具有出色的性能,正是這種高度可預(yù)測(cè)的良好性能使運(yùn)算放大器成為現(xiàn)代模擬設(shè)計(jì)中廣泛應(yīng)用的組成部分。這是如何實(shí)現(xiàn)的?
在實(shí)際的OPA中,各元件固有的“慣性”會(huì)造成相位滯后,在高頻時(shí),相位滯后更加嚴(yán)重,從而導(dǎo)致出現(xiàn)大相位角。大部分原因應(yīng)該歸結(jié)于晶體管,但電阻的電容特性也會(huì)造成相位滯后。如果增益幅度過大,閉環(huán)響應(yīng)將不穩(wěn)定。這種情況通過“HF補(bǔ)償”來解決,說明大多數(shù)當(dāng)代運(yùn)算放大器中都會(huì)考慮這一點(diǎn)。穩(wěn)定性標(biāo)準(zhǔn)大家都很熟悉,比較可靠的教科書中都會(huì)進(jìn)行全面闡述(關(guān)于這個(gè)主題,推薦大家閱讀麻省理工學(xué)院的Jim Roberge撰寫的《運(yùn)算放大器》)。到目前為止,最常用的穩(wěn)定技術(shù)是“主導(dǎo)極點(diǎn)(dominant pole)”,它可以保證閉環(huán)響應(yīng)無條件保持穩(wěn)定(至少在單位閉環(huán)增益和并非完全無功負(fù)載的情況下),雖然從某些方面來說效率很低,卻大大簡(jiǎn)化了運(yùn)算放大器的使用。但也正是這種技術(shù)導(dǎo)致許多實(shí)際應(yīng)用中的交流增益極低。
在數(shù)據(jù)手冊(cè)中,OPA的性能通過大量與直流特性有關(guān)的數(shù)據(jù)來體現(xiàn)。其中之一是開環(huán)直流電壓增益AO。在競(jìng)爭(zhēng)激烈的現(xiàn)代社會(huì),人們認(rèn)為AO低于100dB(也就是低于x100,000)的運(yùn)算放大器才剛剛勉強(qiáng)達(dá)到標(biāo)準(zhǔn)。所以,人們費(fèi)盡心力地來提高這個(gè)參數(shù)值——100萬很常見,1000萬也算平常。我不明白為什么大家需要這么高的增益。即使在應(yīng)變儀(strain-gauge)接口這樣的應(yīng)用中,數(shù)百萬直流增益也是不合理的。
例如,假設(shè)我們希望實(shí)現(xiàn)x10,000的閉環(huán)增益,以便將100mV的信號(hào)提升到可用的1V。為了達(dá)到-1%的誤差,有限的AO必須是100萬。但是反饋網(wǎng)絡(luò)中用來定義增益的電阻的精度絕不會(huì)高于1%;應(yīng)變系數(shù)的不確定性往往會(huì)導(dǎo)致更大的標(biāo)度誤差。鑒于應(yīng)變測(cè)量通道的單次校準(zhǔn)通常都是強(qiáng)制性的,所以使用較低的AO就足以提供足夠的性能,特別是當(dāng)這個(gè)參數(shù)在溫度和電源電壓下是穩(wěn)定的,設(shè)計(jì)良好的現(xiàn)代產(chǎn)品通常都是如此。
從前的謎題
人們偶然注意到,集成電路中出現(xiàn)的某些微妙的、一時(shí)令人費(fèi)解的限制,可能會(huì)阻礙實(shí)現(xiàn)非常高的直流電子增益。在運(yùn)算放大器發(fā)展早期,這曾經(jīng)是相當(dāng)大的問題,當(dāng)時(shí)人們還不像現(xiàn)在技術(shù)嫻熟的設(shè)計(jì)師一樣了解硅的真實(shí)特性。事實(shí)上,這個(gè)問題首次出現(xiàn)時(shí),人們覺得非常令人費(fèi)解。不僅增益低于預(yù)期值(通常要低得多),它甚至可以是反相符號(hào):也就是說,外部網(wǎng)絡(luò)提供的負(fù)反饋在非常低的頻率下變?yōu)檎答?,但閉環(huán)響應(yīng)卻保持穩(wěn)定!這怎么可能呢?
人們很快意識(shí)到,罪魁禍?zhǔn)讘?yīng)該是來自輸出級(jí)的熱反饋(輸出級(jí)的運(yùn)行溫度可能非常高),然后被回傳給始終用作輸入級(jí)的差分對(duì)。由此產(chǎn)生的熱梯度可以在這些器件之間產(chǎn)生VBE。這種影響非常大:對(duì)于雙極晶體管,僅0.01℃的溫差在室溫下會(huì)產(chǎn)生約20µV偏置電壓(如果芯片溫度更高,該值越大)。假設(shè)這種功率變化造成的1V輸出的差值,那么“熱增益”應(yīng)該只是1V/20µV,或僅為50,000。顯然,熱反饋信號(hào)由部署的精密細(xì)節(jié)決定,如果它應(yīng)該是正的,則將在與電反饋相反的方向運(yùn)行。但交流響應(yīng)保持穩(wěn)定,因?yàn)樗怯筛哳l率上的特征決定的。事實(shí)上,交流響應(yīng)在幾乎所有實(shí)際的運(yùn)算放大器應(yīng)用中占主導(dǎo)地位。
現(xiàn)代運(yùn)算放大器系統(tǒng)中很少出現(xiàn)熱反饋問題,這是因?yàn)樗鼈儾捎昧硕喾N共中心布局技術(shù)。這種技術(shù)最早的采用應(yīng)該歸功于ADI公司的Mitch Madique,它也用到了晶體管的交叉四方(cross-quad)特性:不是采用單對(duì)晶體管,而是將兩組晶體管呈方形放置,并且采用會(huì)抵消熱感應(yīng)偏置的方式連接。但這并不是實(shí)現(xiàn)所需的漸變效果唯一可能的布局。有時(shí)候,采用另一種方案會(huì)更方便,我將它稱為懶人“交叉四方”,表示一種線性A-B-B-A布局。共中心方法現(xiàn)在已成為慣常采用的方法,它們最大限度地減少了放大器輸入端的直流誤差源,例如由芯片上的摻雜梯度引起的誤差,以及機(jī)械應(yīng)變的影響,它們?cè)谠S多其它單片設(shè)計(jì)領(lǐng)域也很有用,比如電流鏡(Current Mirror)。
內(nèi)部積分電路
運(yùn)算放大器數(shù)據(jù)手冊(cè)也給出了“單位增益”頻率,我們稱之為f1。通過采用主導(dǎo)極點(diǎn)方法,在較低的信號(hào)頻率fs下,增益幅值會(huì)增加,其值并不難算:就是fs/f1。因此,如果我們使用單位增益頻率為f1 = 10MHz的運(yùn)算放大器,在100kHz時(shí)它的增益正好是100——離無限差遠(yuǎn)了!我在會(huì)上指出了這一點(diǎn),問聽眾:“假設(shè)你有一個(gè)100MHz單位增益的運(yùn)算放大器,在30MHz信號(hào)下,它的開環(huán)增益是多少?”回應(yīng)非常有趣,很明顯,很多人都心算過了,得出的增益值是3.3。但是“每個(gè)人都知道”運(yùn)算放大器的增益值是極高的,這讓他們開始嚴(yán)重懷疑自己計(jì)算結(jié)果的正確性。沒人舉手回答!
這是一個(gè)簡(jiǎn)單的事實(shí),毫不夸張。OPA一派的運(yùn)算放大器設(shè)計(jì)在大多數(shù)信號(hào)頻率下,都不會(huì)產(chǎn)生高開環(huán)增益。如果我們回到應(yīng)變儀測(cè)量接口問題,并且提問:“對(duì)于直流增益為1000萬,單位增益頻率(f1)為1MHz的放大器,在只有100Hz的信號(hào)頻率(在振動(dòng)測(cè)量?jī)x器中相當(dāng)常見)下,開環(huán)增益是多少?”它只有10,000,也就是說,比直流開環(huán)增益低千倍,顯然與動(dòng)態(tài)響應(yīng)無關(guān)。
我們來仔細(xì)看看通過主導(dǎo)極點(diǎn)(今天仍然是主流技術(shù)!)穩(wěn)定下來的典型運(yùn)算放大器的響應(yīng)。我們看到f1以下的增益與頻率直接成反比,直到達(dá)到非常低的角頻率為止,在上面的示例中,它的值是1MHz/10,000,000,或0.1Hz,盡管這個(gè)數(shù)字全無意義。至于高于f1的fs,它會(huì)以一種近似線性的方式,隨著頻率的增加而降低,至少在一段時(shí)間內(nèi)是這樣。那么,如何稱呼這種功能呢?我們將它稱為“integrator”(積分電路),其交流增益可以用拉普拉斯公式A(s) = 1/sT1來表示,其中T1是特征時(shí)間常數(shù),由公式f1 = 1/2pT1可知,與f1有關(guān)系。因此,就頻率精度而言,我們可以說運(yùn)算放大器最重要的參數(shù)是它的單位增益頻率f1,也就是它的特征時(shí)間常數(shù)T1。哈哈,要向英特爾致歉了,我們可以說運(yùn)算放大器的標(biāo)志就是“Integrator Inside”!
這是對(duì)OPA的一種不同看法,與上述教科書中的觀點(diǎn)不同。但從它本身來說也是一種理想,只是更貼近現(xiàn)實(shí)。此外,它完全符合教科書宣稱的無限直流增益,因?yàn)?/sT1在s = 0(也就是f = 0)時(shí)會(huì)達(dá)到無限。如果預(yù)算放大器在實(shí)際應(yīng)用中是正常的、可預(yù)測(cè)的,1/sT1特征通常是需要的(雖然不是必需:先進(jìn)的高速放大器使用調(diào)整過的穩(wěn)定范式。)
OPA的“積分電路視角”非常有價(jià)值。GHz頻率的增益不受約束,這是大多數(shù)教科書和大學(xué)課堂中廣泛講授的說法,但這只是應(yīng)用領(lǐng)域最天真的想法。事實(shí)上,人們甚至可以斷言(我就會(huì)!),正是因?yàn)閭鹘y(tǒng)運(yùn)算放大器的這個(gè)獨(dú)特的“integrator”,它才被廣泛用于數(shù)不清的應(yīng)用中,由此實(shí)現(xiàn)無故障運(yùn)行,且無需對(duì)用戶進(jìn)行過度關(guān)注。但是,有人可能會(huì)說,每個(gè)應(yīng)用都能輕松采用運(yùn)算放大器的這個(gè)現(xiàn)象令人遺憾,因?yàn)樗鼤?huì)導(dǎo)致某種程度的懶惰,并且常常會(huì)忽略手頭上可能更好解決這個(gè)問題的其它方法。
就是Active-R濾波器?
或許我們應(yīng)該舉一個(gè)與這種“普遍”觀點(diǎn)有關(guān)的示例,許多年前出現(xiàn)了一大堆誤導(dǎo)人的學(xué)術(shù)論文,這些論文指出,運(yùn)算放大器被應(yīng)用到不適合的應(yīng)用中時(shí),存在嚴(yán)重缺陷。眾所周知,濾波器設(shè)計(jì)(當(dāng)時(shí)比較常見的是Sallen-and-Key類型)在高頻率下會(huì)受到所謂“因?yàn)檫\(yùn)算放大器產(chǎn)生多余相位”的嚴(yán)重影響。當(dāng)然,從積分器角度我們可以看出,其實(shí)一點(diǎn)都不“多余”!運(yùn)算放大器能夠準(zhǔn)確提供預(yù)期的設(shè)計(jì)功效:增益幅度每十倍頻程降20dB,相位恒定為-90度。“多余相位”這個(gè)詞可能更適合用來表示:相位角的幅度在高于單位增益頻率時(shí)快速增大的現(xiàn)象,或者單單因?yàn)闀r(shí)間延遲導(dǎo)致的額外相位。但這兩種都不是導(dǎo)致濾波器中經(jīng)常出現(xiàn)令人煩惱的Q增強(qiáng)的原因。
然后,有一天,有人靈光一閃,“我知道了,我們可以使用運(yùn)算放大器極點(diǎn)來實(shí)現(xiàn)濾波器時(shí)間常數(shù)!”這是一個(gè)好主意,可以說,就是在它的基礎(chǔ)上,誕生了如今所謂的“gm/C”型濾波器設(shè)計(jì)。但根據(jù)實(shí)際考慮來看,它存在嚴(yán)重缺陷。它因?yàn)槭褂?ldquo;Active-R”這個(gè)名稱而被過度炒作,其實(shí)這個(gè)名稱毫無意義。任何純模擬濾波器基本上都必須使用儲(chǔ)能器件,在大多數(shù)單片低頻濾波器中都是電容器,因此必須始終保持“Active-CR”。我們很肯定,運(yùn)算放大器中會(huì)嵌入電容器,用作主導(dǎo)極點(diǎn)生成元件。我想學(xué)者們應(yīng)該很清楚這一點(diǎn),但是通過改換名稱來避免更深入的考量,顯然令人難以理解。
因?yàn)檫@個(gè)原因,我在《Electronics Letters》上發(fā)表了一篇名為《運(yùn)算放大器極點(diǎn)的使用:一次警示》的文章,在文中指出,商業(yè)運(yùn)算放大器的單位增益頻率f1是不準(zhǔn)確的,其公差從未確定:它一般只用于保證穩(wěn)定性,且通常具有比較大的裕量。順便說一句,這引發(fā)了一個(gè)有趣的觀點(diǎn)。鑒于f1在幾乎所有應(yīng)用中的重要性(幾十年來它完全決定了低于它的開環(huán)增益),不采用具備經(jīng)過校準(zhǔn)的f1的運(yùn)算放大器時(shí)結(jié)果非常令人驚訝,我認(rèn)為它在很大程度上反映了人們?nèi)匀蝗狈σ环N認(rèn)知:這個(gè)參數(shù)只是衡量運(yùn)算放大器使用的一個(gè)基本參數(shù)?,F(xiàn)在,CR乘積(用于確定A(s) = 1/sT1中的T1)的受控率約為±35%,但是可以使用現(xiàn)代化產(chǎn)品設(shè)備輕松調(diào)節(jié)到1%,且可以通過精心設(shè)計(jì),將其保持在非常接近室溫值。
此外,因?yàn)樵诖蠖鄶?shù)商業(yè)運(yùn)算放大器中f1的絕對(duì)控制性很差(因此使用隨機(jī)選擇的放大器時(shí)導(dǎo)致多極點(diǎn)濾波器的極點(diǎn)位置嚴(yán)重分散),且此參數(shù)的溫度穩(wěn)定性也很差,所以命名糟糕的“Active-R”技術(shù)也存在嚴(yán)重局限性,幸好這種技術(shù)自然消亡了。其中一個(gè)限制是,典型的雙極輸入級(jí)的信號(hào)容量非常有限,在許多電平下會(huì)出現(xiàn)大規(guī)模奇數(shù)階失真,因此在實(shí)際濾波器中不適用。在T = 27°C、基礎(chǔ)與基礎(chǔ)之間的驅(qū)動(dòng)電平僅為±20mV時(shí),簡(jiǎn)單雙極對(duì)的HD3為1%(-40dBc)。
在批評(píng)了學(xué)術(shù)界的輕率行為之后,我意外收到一位教授來信,信的開頭是這樣寫的:“親愛的Gilbert博士:我們看到了您對(duì)我們研究的‘Active-R’過濾器的批評(píng),我可以保證,這些是完全實(shí)用的。事實(shí)上,我的一個(gè)學(xué)生.....(此處省略一萬字)”有時(shí),讓人接受一個(gè)哪怕非常簡(jiǎn)單、真實(shí)的觀點(diǎn)也很困難。
“虛地”毫無根據(jù)
介紹運(yùn)算放大器的書籍喜歡贊美“虛地”的優(yōu)點(diǎn),這個(gè)觀點(diǎn)源于在OPA的輸入端提供對(duì)反相輸入的負(fù)反饋,且(通常)這個(gè)OPA輸入是接地的非反相輸入(此節(jié)點(diǎn)可能只是交流接地,或者甚至用于其它與信號(hào)相關(guān)的用途。)反向輸入也被稱為“求和節(jié)點(diǎn)”,因?yàn)樗谀M計(jì)算機(jī)應(yīng)用中很常見,通過單個(gè)電阻將幾個(gè)電壓轉(zhuǎn)換成電流并求和,求和節(jié)點(diǎn)充當(dāng)所謂的“虛地”。它是虛擬的,因?yàn)樗]有通過線纜連接到地面,但是(有人跟我們說)整個(gè)系統(tǒng)(OPA和電阻)運(yùn)行起來就像是接地了一樣,除了所有流向它的求和電流必須先流經(jīng)反饋電阻,并產(chǎn)生輸出電壓。
教科書中如此解釋:因?yàn)樵鲆娣浅7浅8?,在這個(gè)神奇的求和節(jié)點(diǎn)/虛地上從來沒有任何顯著的電壓變化,所以輸入電壓被精確地轉(zhuǎn)換成與之成比例的電流,而被稱為“通過OPA接地”的輸出也同樣精確。這是一個(gè)很誘人的概念,但它并不完全正確。與“所有的求和電流”有關(guān)的部分沒什么問題,因?yàn)镺PA的輸入電流通??梢院雎圆挥?jì),即使在頻率非常接近f1時(shí)也是如此;可以歸結(jié)為輸入電容的量極少。而且,即使是一個(gè)適度分流的輸入電阻(比如1MΩ)也不算很大問題。
那么,問題出在哪里呢?簡(jiǎn)單地說,有限的交流開環(huán)增益要求輸入端有一定的有限電壓,這意味著“虛地”不過是一個(gè)節(jié)點(diǎn),在這個(gè)節(jié)點(diǎn)上,每當(dāng)輸入端有任何變化時(shí),都必定存在一個(gè)可能引發(fā)問題的適當(dāng)?shù)碾妷?。為了理解這種觀點(diǎn)離理想狀態(tài)有多遙遠(yuǎn),我們不妨考慮一下用于將DAC的輸出電流轉(zhuǎn)換為電壓的OPA,也就是經(jīng)典的跨阻抗功能。我們把擴(kuò)展這個(gè)功能的反饋電阻當(dāng)做RF?,F(xiàn)在將運(yùn)算放大器模擬為一個(gè)積分電路(這一步必須做),并考慮與電流階躍對(duì)應(yīng)的“虛地”的電壓擺幅。最開始,運(yùn)算放大器的輸出保持不變;其初始響應(yīng)類似斜坡,在放大器執(zhí)行VOUT = -VIN/sT1運(yùn)算時(shí)出現(xiàn)。在本例中,VIN是什么?它其實(shí)就是DAC輸出電流階躍(稱為IDAC)乘以反饋電阻RF。在IDAC = 2mA、RF = 5kΩ(最終輸出為10V)這種典型示例中,輸入階躍也是10V!
當(dāng)OPA輸出在輸入端對(duì)整個(gè)最終值的“誤差電壓”進(jìn)行積分的時(shí)候,誤差按單純由單位增益頻率決定的速率呈指數(shù)下降,即基于T1時(shí)間常數(shù)。在這段時(shí)間內(nèi),反向節(jié)點(diǎn)遠(yuǎn)非是一個(gè)“虛地”,相反在本例中電壓上升到最高輸出值10V,然后回落到接近零。在實(shí)際應(yīng)用中,實(shí)際電壓會(huì)低于這個(gè)值,因?yàn)檩斎刖w管總是會(huì)發(fā)生發(fā)射極-基極擊穿(在回轉(zhuǎn)期間,DAC也經(jīng)常會(huì)限制電壓擺幅)。
有時(shí),OPA的輸入端可能包含一個(gè)“二極管盒”,以針對(duì)如此大的輸入提供保護(hù)。有時(shí)會(huì)在電路板上增加肖特基二極管,以“優(yōu)化加速”。這種二極管能夠改善這種情況嗎?嗯,它們肯定可以防止輸入二極管因?yàn)殚L(zhǎng)時(shí)間接觸反向偏置(瞬變或持續(xù))導(dǎo)致的beta下降,但實(shí)際上它們無法加快運(yùn)算放大器的穩(wěn)定,原因很多:現(xiàn)在我們不再采用大誤差電壓,而是將VIN限制在幾百毫伏以內(nèi),而且,輸出端的dV/dt成比例下降至約原速率的1/20。
輸出地在哪里?
似乎很少有運(yùn)算放大器用戶會(huì)關(guān)注輸出地位于何處。大多數(shù)放大器并沒有名為“輸出地”的引腳。那么,它到底在哪里?使用夏洛克·福爾摩斯的排除法,最后發(fā)現(xiàn),它應(yīng)該是其中一個(gè)電源引腳,或者兩個(gè)都是!事實(shí)就是如此。
經(jīng)典OPA包括一個(gè)gm級(jí),然后是一個(gè)電流鏡,其(單邊)電流被積分到片內(nèi)電容Cc,通常被稱為“HF補(bǔ)償電容”。特征時(shí)間常數(shù)T1由商Cc/gm(和按這種方式構(gòu)建的現(xiàn)代濾波器一樣)和f1 = gm/2pCc組成?,F(xiàn)在,許多OPA都使用所謂的密勒積分器(Miller Integrator)拓?fù)?,在這種拓?fù)渲?,這個(gè)重要的電容通常連接在一條實(shí)際的電源線(在npn實(shí)施示例中,通常是VNEG)和輸出之間。所以,放大器的交流輸出基準(zhǔn)電壓源實(shí)際上就是這條電源線。如果它有噪聲,或由于任何原因產(chǎn)生各種其他噪聲,所有這些電壓都會(huì)出現(xiàn)在輸出端。
作者介紹:
Barrie Gilbert是IEEE終身會(huì)員、ADI研究員、美國(guó)國(guó)家工程院院士。他于1937年出生于英國(guó)伯恩茅斯,在Mullard Ltd工作時(shí)對(duì)新“晶體管”產(chǎn)生了興趣,負(fù)責(zé)研發(fā)第一代平面IC。1964年移居美國(guó)后,他加入了俄勒岡州比弗頓的Tektronix公司,在那里開發(fā)了首個(gè)電子旋鈕讀取系統(tǒng),并取得了與儀器相關(guān)的其它進(jìn)展。從1970年到1972年,他回到英國(guó)擔(dān)任Plessey研究實(shí)驗(yàn)室的組長(zhǎng)。1972年他擔(dān)任ADI公司的IC設(shè)計(jì)師,于1979年正式加盟ADI公司,成為第一代研究員。現(xiàn)在,他在比弗頓擁有自己的NW實(shí)驗(yàn)室,主導(dǎo)高性能模擬IC的開發(fā)。
因?yàn)楹喜⒕w管邏輯(后來稱為I2L)方面的成就,他于1970年榮獲了IEEE頒發(fā)的“杰出成就獎(jiǎng)”;1986年,IEEE固態(tài)電路委員會(huì)授予他“杰出開發(fā)獎(jiǎng)”,表彰他早期對(duì)跨導(dǎo)線性技術(shù)的發(fā)明。1990年,他獲得了“俄勒岡州年度研究員”獎(jiǎng),并因“對(duì)非線性信號(hào)處理的杰出貢獻(xiàn)”獲得了固態(tài)電路委員會(huì)獎(jiǎng)(1992年)。他曾先后5次獲得ISSCC頒發(fā)的“優(yōu)秀論文”獎(jiǎng),2次獲得ESSCIRC頒發(fā)的“最佳論文”獎(jiǎng),多次獲得行業(yè)“最佳產(chǎn)品”獎(jiǎng)等;此外,他還撰寫了大量關(guān)于模擬設(shè)計(jì)的文章,并經(jīng)常進(jìn)行演講。他在全球擁有100多項(xiàng)專利,并擁有俄勒岡州立大學(xué)工程榮譽(yù)博士學(xué)位。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器