【導讀】電阻在電路中起限制電流或將電能轉變?yōu)闊崮艿淖饔茫饕亲鳛橐粋€限流元件來使用,另外還有分壓、分流和降壓的作用。本文對精密線繞電阻、薄膜電阻、厚膜電阻、金屬箔電阻進行詳細介紹。
電阻在電路中起限制電流或將電能轉變?yōu)闊崮艿淖饔?,主要是作為一個限流元件來使用,另外還有分壓、分流和降壓的作用。
電阻按其制造工藝,可以分為精密線繞電阻、薄膜電阻、厚膜電阻、金屬箔電阻,各種電阻技術的優(yōu)缺點如表1所示,表中給出了熱應力和機械應力對電阻電氣特性的影響。
表1: 不同類型電阻的特性
應力(無論機械應力還是熱應力)會造成電阻電氣參數(shù)改變。當形狀、長度、幾何結構、配置或模塊化結構受機械或其他方面因素影響發(fā)生變化時,電氣參數(shù)也會發(fā)生變化,這種變化可用基本方程式來表示:R = ρ L/A,式中
R = 電阻值,以歐姆為單位,
ρ = 材料電阻率,以歐姆米為單位,
L = 電阻元件長度,以米為單位,
A = 電阻元件截面積,以平方米為單位。
電流通過電阻元件時產生熱量,熱反應會使器件的每種材料發(fā)生膨脹或收縮機械變化。環(huán)境溫度條件也會產生同樣的結果。因此,理想的電阻元件應能夠根據(jù)這些自然現(xiàn)象進行自我平衡,在電阻加工過程中保持物理一致性,使用過程中不必進行熱效應或應力效應補償,從而提高系統(tǒng)穩(wěn)定性。
精密線繞電阻
線繞電阻一般分為“功率線繞電阻”和“精密線繞電阻”。功率線繞電阻使用過程中會發(fā)生很大變化,不適于精密度要求很高的情況下使用。因此,本討論不考慮這種電阻。
線繞電阻的制作方法一般是將絕緣電阻絲纏繞在特定直徑的線軸上。不同線徑、長度和合金材料可以達到所需電阻和初始特性。精密線繞電阻 ESD 穩(wěn)定性更高,噪聲低于薄膜或厚膜電阻。線繞電阻還具有 TCR 低、穩(wěn)定性高的特點。
線繞電阻初始誤差可以低至 ± 0.005 %。TCR (溫度每變化一攝氏度,電阻的變化量) 可以達到 3 ppm/°C典型值。不過,降低電阻值,線繞電阻一般在15 ppm/°C 到 25 ppm/°C。熱噪聲降低,TCR 在限定溫度范圍內可以達到 ± 2 ppm/°C 。
線繞電阻加工過程中,電阻絲內表面 (靠近線軸一側) 收縮,而外表面拉伸。這道工藝產生永久變形 — 相對于彈性變形或可逆變形,必須對電阻絲進行退火。永久性機械變化 (不可預測) 會造成電阻絲和電阻電氣參數(shù)任意變化。因此,電阻元件電性能參數(shù)存在很大的不確定性。
由于線圈結構,線繞電阻成為電感器,圈數(shù)附近會產生線圈間電容。為提高使用中的響應速度,可以采用特殊工藝降低電感。不過,這會增加成本,而且降低電感的效果有限。由于設計中存在的電感和電容,線繞電阻高頻特性差,特別是 50 kHz 以上頻率。
兩個額定電阻值相同的線繞電阻,彼此之間很難保證特定溫度范圍內精確的一致性,電阻值不同,或尺寸不同時更為困難 (例如,滿足不同的功率要求)。這種難度會隨著電阻值差異的增加進一步加劇。以1-kΩ 電阻相對于100-kΩ 電阻為例,這種不一致性是由于直徑、長度,并有可能由于電阻絲使用的合金不同造成的。而且,電阻芯以及每英寸圈數(shù)也不同—機械特性對電氣特性的影響也不一 樣。由于不同的電阻值具有不同的熱機特性,因此它們的工作穩(wěn)定性不一樣,設計的電阻比在設備生命周期中會發(fā)生很大變化。TCR 特性和比率對于高精度電路極為重要。
傳統(tǒng)線繞電阻加工方法不能消除纏繞、封裝、插入和引線成型工藝中產生的各種應力。固定過程中,軸向引線往往采用拉緊工藝,通過機械力加壓封裝。這兩種方法會改變電阻,無論加電或不加電。從長期角度看,由于電阻絲調整為新的形狀,線繞元件會發(fā)生物理變化。
[page]
薄膜電阻
薄膜電阻由陶瓷基片上厚度為 50 Å 至 250 Å 的金屬沉積層組成 (采用真空或濺射工藝)。薄膜電阻單位面積阻值高于線繞電阻或 Bulk Metal® 金屬箔電阻,而且更為便宜。在需要高阻值而精度要求為中等水平時,薄膜電阻更為經濟并節(jié)省空間。
它們具有最佳溫度敏感沉積層厚度,但最佳薄膜厚度產生的電阻值嚴重限制了可能的電阻值范圍。因此,采用各種沉積層厚度可以實現(xiàn)不同的電阻值范圍。薄膜電阻 的穩(wěn)定性受溫度上升的影響。薄膜電阻穩(wěn)定性的老化過程因實現(xiàn)不同電阻值所需的薄膜厚度而不同,因此在整個電阻范圍內是可變的。這種化學/機械老化還包括電 阻合金的高溫氧化。此外,改變最佳薄膜厚度還會嚴重影響 TCR。由于較薄的沉積層更容易氧化,因此高阻值薄膜電阻退化率非常高。
由于金屬量少,薄膜電阻在潮濕的條件下極易自蝕。浸入封裝過程中,水蒸汽會帶入雜質,產生的化學腐蝕會在低壓直流應用幾小時內造成薄膜電阻開路。改變最佳薄膜厚度會嚴重影響 TCR。由于較薄的沉積層更容易氧化,因此高阻值薄膜電阻退化率非常高。
厚膜電阻
如前所述,受尺寸、體積和重量的影響,線繞電阻不可能采用晶片型。盡管精度低于線繞電阻,但由于具有更高的電阻密度 (高阻值/小尺寸) 且成本更低,厚膜電阻得到廣泛使用。與薄膜電阻和金屬箔電阻一樣,厚膜電阻頻響速度快,但在目前使用的電阻技術中,其噪聲最高。雖然精度低于其他技術,但 我們之所以在此討論厚膜電阻技術,是由于其廣泛應用于幾乎每一種電路,包括高精密電路中精度要求不高的部分。
厚膜電阻依靠玻璃基體中粒子間的接觸形成電阻。這些觸點構成完整電阻,但工作中的熱應變會中斷接觸。由于大部分情況下并聯(lián),厚膜電阻不會開路,但阻值會隨著時間和溫度持續(xù)增加。因此,與其他電阻技術相比,厚膜電阻穩(wěn)定性差 (時間、溫度和功率)。
由于結構中成串的電荷運動,粒狀結構還會使厚膜電阻產生很高的噪聲。給定尺寸下,電阻值越高,金屬成份越少,噪聲越高,穩(wěn)定性越差。厚膜電阻結構中的玻璃成分在電阻加工過程中形成玻璃相保護層,因此厚膜電阻的抗?jié)裥愿哂诒∧る娮琛?br />
金屬箔電阻
將具有已知和可控特性的特種金屬箔片敷在特殊陶瓷基片上,形成熱機平衡力對于電阻成型是十分重要的。然后,采用超精密工藝光刻電阻電路。這種工藝將低 TCR、長期穩(wěn)定性、無感抗、無 ESD 感應、低電容、快速熱穩(wěn)定性和低噪聲等重要特性結合在一種電阻技術中。
這些功能有助于提高系統(tǒng)穩(wěn)定性和可靠性,精度、穩(wěn)定性和速度之間不必相互妥協(xié)。為獲得精確電阻值,大金屬箔晶片電阻可通過有選擇地消除內在“短板”進行修整。當需要按已知增量加大電阻時,可以切割標記的區(qū)域 (圖2),逐步少量提高電阻。
圖2
合金特性及其與基片之間的熱機平衡力形成的標準溫度系數(shù),在0 °C 至 + 60 °C 范圍內為 ± 1 ppm/°C (Z 箔為0.05 ppm/°C) (圖3)。
圖3
采用平箔時,并聯(lián)電路設計可降低阻抗,電阻最大總阻抗為 0.08 uH。最大電容為 0.05 pF。1-kΩ 電阻設置時間在 100 MHz以下小于 1 ns。上升時間取決于電阻值,但較高和較低電阻值相對于中間值僅略有下降。沒有振鈴噪聲對于高速切換電路是十分重要的,例如信號轉換。
100 MHZ 頻率下,1-kΩ 大金屬箔電阻直流電阻與其交流電阻的對比可用以下公式表示:
交流電阻/直流電阻 = 1.001
圖4: 大金屬箔電阻結構
金屬箔技術全面組合了高度理想的、過去達不到的電阻特性,包括低溫度系數(shù)(0 °C 至 + 60 °C 為 0.05 ppm/°C),誤差達到 ± 0.005 % (采用密封時低至 ± 0.001 %),負載壽命穩(wěn)定性在 70 °C,額定加電2000小時的情況下達到 ± 0.005 % (50 ppm),電阻間一致性在 0 °C 至 + 60 °C 時為 0.1 ppm/°C,抗 ESD 高達 25 kV。
性能要求
當然并非每位設計師的電路都需要全部高性能參數(shù)。技術規(guī)格相當差的電阻同樣可以用于大量應用中,這方面的問題分為四類:
(1) 現(xiàn)有應用可以利用大金屬箔電阻的全部性能升級。
(2) 現(xiàn)有應用需要一個或多個,但并非全部“行業(yè)最佳”性能參數(shù)。
(3) 先進的電路只有利用精密電阻改進的技術規(guī)格才能開發(fā)。
(4) 有目的地提前計劃使用精密電阻滿足今后升級要求 (例如,利用電阻而不是有源器件保持電路精度,從而節(jié)省成本,否則僅僅為了略微提高性能則要顯著增加成本)。