【導(dǎo)讀】本文介紹了目前三種5G射頻組件,并關(guān)注這些組件在軍事通信領(lǐng)域中的應(yīng)用。通過詳細(xì)介紹RF MEMS開關(guān)、基于物聯(lián)網(wǎng)的能量收集器、RF SAW濾波器三種組件的內(nèi)部結(jié)構(gòu)、技術(shù)特點以及它們支持增強(qiáng)系統(tǒng)應(yīng)用的功能,同時根據(jù)其技術(shù)特點,對5G通信配套組件在未來軍事通信領(lǐng)域的應(yīng)用進(jìn)行了展望。
0 引言
隨著物聯(lián)網(wǎng)(IoT)的出現(xiàn)以及下一代移動網(wǎng)絡(luò)5G目標(biāo)的實現(xiàn),電路和設(shè)備技術(shù)都取得了長足的進(jìn)步。本文重點介紹三種5G器件技術(shù)及其組件,從射頻/微波微機(jī)電系統(tǒng)(MEMS)器件到物聯(lián)網(wǎng)傳感器的能量收集,再到聲表面波濾波器的應(yīng)用,并對這三種組件的軍事通信應(yīng)用技術(shù)可行性進(jìn)行了探討,給出了應(yīng)用示例。
本文第一部分介紹并評估RF MEMS開關(guān)以及實現(xiàn)所需要的RF的設(shè)計要求,這里主要關(guān)注RF MEMS開關(guān)構(gòu)成和RF性能方面的先進(jìn)性,因為它們將在未來通信領(lǐng)域,特別是軍事通信領(lǐng)域發(fā)揮越來越重要的作用。
第二部分主要關(guān)注能量收集器在IoT中的應(yīng)用,主要討論熱電能量發(fā)生器(TEG)設(shè)備。熱電能量收集器指的是那些可以用收集到的微量的浪費(fèi)熱量來產(chǎn)生可使用電能的設(shè)備,該轉(zhuǎn)化的電能反過來可以應(yīng)用在設(shè)備上。無論是軍用還是民用通信設(shè)備,熱-電能量發(fā)生器的優(yōu)勢適合于一些不便接受或更換的場景,因此在軍事通信裝備中將有廣闊應(yīng)用的可能。
第三部分將介紹RF表面聲波(SAW)濾波器的技術(shù)和應(yīng)用。這些叉指式換能器(IDT)內(nèi)容的介紹將主要針對射頻前端接收的無源MEMS諧振器及搭建成的多級SAW濾波器,目前這種濾波器已開始在軍事通信領(lǐng)域展露出相關(guān)應(yīng)用。
最后,本文分別對三種組件的技術(shù)局限或應(yīng)用瓶頸,以及它們在工藝和工程推廣中存在的困難和不足,進(jìn)行分析和介紹,并對全文進(jìn)行總結(jié)。
1 射頻微機(jī)電系統(tǒng)(RF MEMS)
過去,MEMS開關(guān)一致被認(rèn)為是性能有限的機(jī)電繼電器的優(yōu)越替代品,憑借易于使用、損耗最小、線性度好、隔離度高、可靠性高的優(yōu)勢,從0 Hz到數(shù)百GHz的小型開關(guān),一經(jīng)問世就改變了許多電子設(shè)備的實現(xiàn)方法,尤其在電子測量、國防軍事和健康監(jiān)護(hù)等行業(yè)設(shè)備中形成了規(guī)模應(yīng)用。
RF MEMS器件是MEMS與射頻技術(shù)相結(jié)合的一類器件,具有體積小、易集成、功耗低、可靠性高、Q值高等優(yōu)點,可代替?zhèn)鹘y(tǒng)無線通信設(shè)備中的半導(dǎo)體器件,既可以器件配裝電路,如MEMS開關(guān)、MEMS電容、MEMS諧振器,也可以集成到同一芯片組成組件和模塊,如濾波器、VCO、RF MEMS移相器。將來很長一段時間,功率半導(dǎo)體器件(也被稱為第三代半導(dǎo)體器件),會成為電子設(shè)備尤其是功率電子設(shè)備的主要發(fā)展方向。目前在軍事通信設(shè)備領(lǐng)域,國產(chǎn)功率器件和MEMS器件進(jìn)行組合,相對于原先以晶體集成電路加功率放大電路的組合,正慢慢開始替代升級,成為通信設(shè)備、光電、雷達(dá)配套組件電路設(shè)計中的一種新思路。RF MEMS開關(guān)和IGBT器件的結(jié)合,在對功率和高頻同時具有高指標(biāo)和高可靠性要求的場合,具有革命性的意義,如應(yīng)用于相控陣?yán)走_(dá)天線的T/R模塊,其性能對設(shè)備和系統(tǒng)應(yīng)用具有深遠(yuǎn)影響。
(1)主動開放式MEMS
這里介紹一型DC(K波段)0 Hz~26 GHz且超長使用壽命的單刀雙擲(SPDT)MEMS開關(guān),與集成驅(qū)動電路配合使用,技術(shù)成熟度較高,已在多個工程型號中應(yīng)用。該開關(guān)在26 GHz時具有1 dB的插入損耗和23dB的阻斷隔離。MEMS開關(guān)可實現(xiàn)的射頻特性非常適合5G和毫米波軍事通信設(shè)備,因為它們的器件非線性特性非常明顯,且具有低損耗和高帶寬,這幾乎是為軍事通信裝備量身定做的,很容易滿足電路的功率要求。ADI公司的一型5G通信MEMS開關(guān),技術(shù)指標(biāo)就達(dá)到了69 dBm的IIP3線性度且在大于36dBm的功率下正常工作的水平。
圖1展示了主動開放式MEMS裝置的三維表示以及其對應(yīng)的SEM顯微照片圖像。兩個柵電極分別位于光束的后部和前部,通過向相應(yīng)的控制電極施加適當(dāng)電壓,使光束閉合和靜電打開。該MEMS開關(guān)管芯使用高電阻率硅晶片構(gòu)造,該硅晶片在二氧化硅電介質(zhì)中實現(xiàn)多晶硅、鋁和鎢的CMOS兼容互聯(lián),以形成開關(guān)器件的電互連。然后使用特殊的不粘接觸金屬和鍍金工藝,將開關(guān)裝置在該電介質(zhì)的頂部進(jìn)行微機(jī)械加工,隨后使用金屬犧牲層釋放金屬,最后再使用晶片級密封玻璃蓋將開關(guān)封裝在硅外殼中。
圖1 主動開放式MEMS開關(guān)的SEM顯微照片及封裝形式圖
(2)MEMS性能
如圖1所示,通過最小化引線鍵合電感,我們可以在塑料封裝中實現(xiàn)26 GHz的RF帶寬。與此同時,我們需要使用多個并聯(lián)引線鍵合將其值降到約300 pH,并配置裝置設(shè)計以盡可能縮短引線的跨度。然后我們在MEMS芯片上產(chǎn)生調(diào)諧匹配電容(約120 fF),同時與引線鍵合產(chǎn)生50 ?的匹配電阻,從而最大限度地減少反射和回波損失。接下來,利用式(1)來計算所需要的匹配電容值,利用式(2)計算出由引線鍵合與焊盤處的匹配電容產(chǎn)生的LC諧振器的截止頻率為26.48 GHz。
器件的隔離標(biāo)準(zhǔn)由開關(guān)的輸入到輸出電容決定,它由開關(guān)級的三個主要元件組成:從尖端到漏極觸點的電容、從光束到漏極區(qū)域的電容,以及從源極區(qū)域到漏極通過襯底的電容。在此基礎(chǔ)上,我們需要盡力使得所有這些電容最小化來達(dá)到5 fF以及更小的參數(shù)級別。式(3)用來計算在給定感興趣頻率f下電容器的電阻電抗(XC),其中C是開關(guān)的關(guān)斷狀態(tài)電容。式(4)可以用來計算以來于電抗器件的傳輸系數(shù)(斷開隔離)以及系統(tǒng)的特征阻抗。
圖2給出了不同的電容之間的期望絕緣隔離與頻率之間的關(guān)系圖,可以看出小于4 fF的電容需要在26 GHz處產(chǎn)生25dB的隔離。
圖2 不同的電容之間的期望絕緣隔離與頻率之間的關(guān)系圖
RF MEMS開關(guān)具有小型化、低成本、低功耗、高度集成化等方面的優(yōu)勢,逐漸廣泛應(yīng)用于軍民各領(lǐng)域,主要包括移動電話、便攜式計算機(jī)的數(shù)據(jù)交換。
軍用市場因小型化、智能化的發(fā)展趨勢,對RF MEMS器件的需求量日益劇增,如基于MEMS技術(shù)的軍用微型機(jī)器人、軍用微型飛行器和軍用微納衛(wèi)星等。目前,并聯(lián)電容式MEMS開關(guān)已工作到驅(qū)動電壓30 V,工作頻率30 GHz的插入損耗小于0.2 dB,隔離度大于40 dB,已可以用于機(jī)載、車載、艦載收發(fā)機(jī)和衛(wèi)星通信終端、北斗導(dǎo)航等軍用通信領(lǐng)域,尤其率先應(yīng)用于信息化作戰(zhàn)指揮、戰(zhàn)場通信、微型化衛(wèi)星通信系統(tǒng)、相控陣?yán)走_(dá)等方面。
另外,根據(jù)MEMS開關(guān)不同的特性,將多個開關(guān)串聯(lián)、并聯(lián)或混聯(lián)組成一個開關(guān)模組,具有更高的隔離度和性能。如將電容式開關(guān)并聯(lián)提高可靠性,將開關(guān)級聯(lián)則可以形成各類移相器;通過設(shè)置開關(guān)數(shù)量改變相移的步進(jìn),通過控制開關(guān)通斷實現(xiàn)相移;通過利用MEMS開關(guān)控制信號傳輸?shù)耐〝嗫蓪崿F(xiàn)濾波器的模擬和數(shù)字可調(diào);把MEMS開關(guān)按相控陣天線的布局方式組合形成一個可重構(gòu)天線,通過控制開關(guān)網(wǎng)絡(luò)可使天線實現(xiàn)在不同頻率和工作模式中切換,可應(yīng)用于對不同工作頻率(覆蓋不同頻率的無線通信局域網(wǎng))、波束波形(雷達(dá)陣列天線)和工作模式(如自動導(dǎo)航系統(tǒng))有特殊需求的軍事裝備等等。
2 熱-電能量收集器
MEMS技術(shù)發(fā)展的關(guān)鍵技術(shù)之一是微能源技術(shù)。熱-電能量收集器指的是那些可以用收集到的微量的浪費(fèi)熱量來產(chǎn)生可使用電能的設(shè)備??捎糜谀芰坎杉臒崮苤饕囟忍荻群蜔崃?,對應(yīng)的能量采集器被稱為溫差電池或熱電發(fā)電機(jī),是一種基于熱電效應(yīng)(或稱為塞貝克效應(yīng)),利用溫度差異使熱能直接轉(zhuǎn)化為電能的裝置。溫差電池的材料主要有金屬和半導(dǎo)體兩種,后者的熱電效應(yīng)較強(qiáng)。熱電效應(yīng)強(qiáng)弱對應(yīng)著熱-電能轉(zhuǎn)化效率的高低。微型熱-電發(fā)電機(jī)最成功的應(yīng)用當(dāng)屬日本精工的熱電腕式手表,該手表使用10個熱電模塊采集人體-環(huán)境之間的溫度差,并轉(zhuǎn)換成微瓦量級能量驅(qū)動手表運(yùn)動。
物聯(lián)網(wǎng)中最需要的是大量傳感器,將態(tài)勢、將能量、信息進(jìn)行傳輸、收集,以匯總、分析或幫助判斷產(chǎn)生指令,傳感器的類型越多,功能越強(qiáng)大,物聯(lián)網(wǎng)的作用和效果就越好。面向物聯(lián)網(wǎng)射頻收發(fā)組件自供電低功耗熱電-光電集成微型傳感器結(jié)構(gòu)方案中,熱-電-光集成微型能量收集器作為能量轉(zhuǎn)換單元,可同時收集射頻功率放大器工作中耗散的熱能和環(huán)境中的光能,收集的電能能夠為射頻收發(fā)組件自身的低功耗模塊(LNA)或微波信號檢測器等構(gòu)成的無線網(wǎng)絡(luò)傳感節(jié)點供電,實現(xiàn)傳感系統(tǒng)的自供電或能量自主。
熱-電能量收集器能夠?qū)⒆陨淼墓╇娤到y(tǒng)應(yīng)用到傳感器上并將它們使用在一些不太容易接近的場景中,同時還能省卻更換電池的環(huán)節(jié)費(fèi)用和降低維護(hù)成本。作為“零腳傳感器”終極設(shè)計目標(biāo)的一部分,其目的是從大約10℃的溫度下降中產(chǎn)生足夠的功率(約400 μW)來為無線傳感器節(jié)點供電。在某些特殊領(lǐng)域,傳感器節(jié)點所需要的所有功率是通過將節(jié)點安裝到加熱表面(如泵、馬達(dá)、熱水器、管道)上,通過吸收環(huán)境的熱能而產(chǎn)生電能為監(jiān)測節(jié)點傳感器供電,而實現(xiàn)無線供電、無限運(yùn)行時間的目的。
這里介紹一種通過貝塞克效應(yīng)將廢熱轉(zhuǎn)化為電能的設(shè)備,當(dāng)熱電-光電集成微型能量收集器兩端加載10 K的溫差時,1 cm 2的芯片可輸出0.6 μW的功率,其結(jié)構(gòu)原理如圖3。
圖3 熱電能量轉(zhuǎn)化器原理圖
在智能化和信息化的今天,節(jié)點傳感器的功耗可以通過組件以及數(shù)據(jù)傳輸速率和傳輸模式進(jìn)行適時調(diào)整和優(yōu)化,也就是說,熱-電能量收集器可以實現(xiàn)一定的自適應(yīng)調(diào)整功能,融入低能耗、能耗管理功能,優(yōu)化調(diào)整集電供電方式,以適應(yīng)用電單元或監(jiān)測模塊的用電需求,使模塊工作時間更長狀態(tài)或設(shè)備更易被監(jiān)控。
事實上,目前軍用市場對能量收集器這一新技術(shù)的需求也逐漸升溫,熱電能量收集器應(yīng)用主要集中于作戰(zhàn)飛機(jī)和直升機(jī)的健康和使用監(jiān)控系統(tǒng)(HUMS),減小功率器件損耗,延長設(shè)備壽命,有效降低了事故率,增加了安全性,減小了使用維護(hù)費(fèi)用,具有十分重要的軍事和經(jīng)濟(jì)效益。未來,熱-電能量收集器可用于裝備共形相控陣列的飛機(jī)上,如安裝在飛機(jī)機(jī)翼的非維護(hù)部位,一方面由于射頻發(fā)射機(jī)工作時會產(chǎn)生大量的熱,以及飛機(jī)飛行中存在顯著的熱對流,為熱-電發(fā)電收集提供了理想熱源;另一方面,飛機(jī)高空飛行時陽光更加充足,微型光電發(fā)電機(jī)的輸出效能可觀。熱電-光電能量收集器不僅可為射頻收發(fā)組件的自身低功耗模塊(LNA)或監(jiān)控發(fā)射功率、諧波失真的微波信號檢測器供電,實現(xiàn)面向射頻收發(fā)組件自供電/低功耗熱電-光電集成傳感系統(tǒng),還可以為其他多種類型的無線低功耗傳感器(比如無線式氣壓傳感器、溫度傳感器、雨量傳感器以及風(fēng)向/速度傳感器等)節(jié)點供電,用于檢測飛機(jī)表面環(huán)境,引導(dǎo)飛機(jī)航行和情報數(shù)據(jù)的采集。其實,不僅限于熱-電轉(zhuǎn)換,微能源可來源于熱-電、光-電、機(jī)械-電、電磁-電等多種能量轉(zhuǎn)換方式,集成化、多樣化的微型能量發(fā)電機(jī)將會具有廣闊而光明的應(yīng)用前景。
3 RF SAW濾波器(射頻聲表面波濾波器)
射頻干擾一直是通信產(chǎn)品設(shè)計師的天敵,需要防范隔離來自設(shè)備自身及外界的多源干擾。射頻濾波器將通信設(shè)備發(fā)射和接收的無線電信號從不同頻段中分離出來,其中SAW因低插損和良好的抑制能力,且被制作在芯片上,而天然具有一系列優(yōu)勢,包括電/機(jī)或機(jī)/電的能量轉(zhuǎn)換效率極高、發(fā)射/接收隔離度好、高頻選擇性好、品質(zhì)因數(shù)高(個別產(chǎn)品大于5000)、較低的插損(1~3 dB)、溫度穩(wěn)定性好。溫度漂移小于10 ppm/ ℃。目前主要應(yīng)用在無源或低輻照的RF喚醒系統(tǒng),例如醫(yī)療保健行業(yè)的遙測等,該喚醒系統(tǒng)還可以與無線收發(fā)器、傳感器系統(tǒng)集成共同封裝,與基于占空比的喚醒系統(tǒng)相比,該系統(tǒng)可以通過降低功耗來最大化電池壽命。
目前,在新一代通信產(chǎn)品開發(fā)中,采用MEMS RF濾波器將首先設(shè)置接收器的選擇性,這需要選擇具有低插入損耗、低溫度系數(shù)和高頻選擇性好的無源濾波器。從設(shè)計角度盾,RF SAW濾波器完全滿足較高的Q值以及低插入損耗諧振器的要求,能極大提升RF MEMS濾波器性能。
圖4所示的結(jié)構(gòu)是一種用于北斗導(dǎo)航通信設(shè)備的IDT TC-SAW(叉指換能結(jié)構(gòu)溫度補(bǔ)償聲表波)諧振器器件結(jié)構(gòu),它采用了6級諧振器串并聯(lián)而構(gòu)成了梯形結(jié)構(gòu)的濾波器,可以滿足北斗導(dǎo)航下行2492 MHz濾波器的設(shè)計需求。圖5結(jié)構(gòu)的SAW濾波器,經(jīng)過試驗測試和工程驗證,性能測試結(jié)果見表1~表3,類似結(jié)構(gòu)形式也可用于其他型號設(shè)備。
圖4 SAW諧振器結(jié)構(gòu)圖
圖5 SAW濾波器結(jié)構(gòu)圖以及不同壓電材料的濾波器頻率響應(yīng)
表1 諧振器結(jié)構(gòu)參數(shù)
表2 SAW濾波器基本參數(shù)
表3 聲表濾波器常溫測試結(jié)果(23 ℃)
RF SAW濾波器通過調(diào)節(jié)諧振器參數(shù)可獲得不同情況下SAW諧振器的性能,比如擁有較高機(jī)電耦合系數(shù)值K2的壓電材料,就可以實現(xiàn)更高帶寬,通過調(diào)節(jié)電路的靜態(tài)電容比Cop/Cos或在電路中串/并聯(lián)加入新的諧振器等方法,可以改進(jìn)濾波器電路的頻率響應(yīng),實現(xiàn)擁有寬帶、高抑制、低插損和高陡峭度的SAW濾波器。而RF SAW濾波器在設(shè)計上的主要特點是設(shè)計靈活性大、模/數(shù)兼容、頻率選擇性好、傳輸損耗小、抗電磁干擾能力強(qiáng)、可靠性高、體積小重量輕等。這些特點正適應(yīng)了現(xiàn)代通信設(shè)備輕薄化、數(shù)字化、高性能、高可靠等方面要求,在軍事領(lǐng)域中RF SAW濾波器主要應(yīng)用于跳/擴(kuò)頻通信、脈沖壓縮雷達(dá)、電子對抗和遙感導(dǎo)航等。
4 總結(jié)
本文概述了三種用于實施5G生態(tài)系統(tǒng)和擴(kuò)展物聯(lián)網(wǎng)的模組件技術(shù)特點,并重點介紹了RF MEMS開關(guān)的技術(shù)特點。它不僅可以支持?jǐn)?shù)據(jù)測量,并且在毫米波工作頻段具有低插入損耗的特點和出色的射頻控制性能,這樣的參數(shù)性能對于軍事通信裝備非常適用。但同時,RF MEMS器件也存在技術(shù)難點,如:受加工工藝約束,性能穩(wěn)定性不夠好;可靠性受材料和環(huán)境的影響大,目前壽命參數(shù)的穩(wěn)定性還需要提高;器件封裝質(zhì)量對性能的影響目前是工程化應(yīng)用的瓶頸;驅(qū)動電壓通常較高( 30~80 V ),在處理大功率的射頻信號時容易導(dǎo)致失效。如果工程化可穩(wěn)定實現(xiàn),那這些性能優(yōu)異、價格適中、可靠性穩(wěn)定性高的RF MEMS通信組件,必將在下一代軍事通信領(lǐng)域大放光彩。
另外,本文提出的基于物聯(lián)網(wǎng)應(yīng)用的熱電能量收集器以及健康監(jiān)測等應(yīng)用,也有一定的技術(shù)瓶頸。在目前技術(shù)下,受材料特性的局限,光-電收集和轉(zhuǎn)化效能輸出高于熱-電效應(yīng)。另外,DC-DC轉(zhuǎn)換是實現(xiàn)熱-電集成微型能量收集器對外輸出功率的必要環(huán)節(jié),對微型熱電式發(fā)電機(jī)來說,輸出的電壓都明顯小于常見器件的供電電壓,需要通過DC-DC電路對它們的輸出升壓后,再為電池充電。但即便如此,基于MEMS技術(shù)的熱/光-電發(fā)電機(jī)等微能源技術(shù),必將是未來低功耗器件的理想解決方案。
最后,本文介紹了RF SAW濾波器的技術(shù)特點和應(yīng)用,以及當(dāng)前面對工程應(yīng)用的技術(shù)難點和局限性,RF SAW諧振器因其無源和良好射頻特性,高Q值和低插損等特點,都非常適合于軍事通信設(shè)備的射頻接收前端。不過,目前RF SAW濾波器也存在技術(shù)上的不成熟和短板,一是目前技術(shù)上適合于3 GHz工作頻率以下,如頻率過高則其基片材料剛度變小、聲速會降低,其性能特性受溫度變化的影響會大幅惡化;二是基片的定向、切割、研磨、拋光等制造工藝復(fù)雜,對設(shè)備的精度和工藝要求高,且投入大;三是所需材料價格昂貴,成本過高,產(chǎn)品特性與軍事裝備可靠性要求還有一定差距。一旦將來材料工藝和高頻段應(yīng)用等技術(shù)難點攻克,它將會廣泛應(yīng)用于未來軍事通信設(shè)備的射頻接收。
本文內(nèi)容轉(zhuǎn)載自《現(xiàn)代導(dǎo)航》2020年第6期,版權(quán)歸《現(xiàn)代導(dǎo)航》編輯部所有。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀: